Bentley P M, Kilcoyne S H, Bubb N L, Ritter C, Dewhurst C D, Wood D J
Hahn-Meitner-Institut, Glienicker Str. 100, D-14109, Berlin, Germany.
Biomed Mater. 2007 Jun;2(2):151-7. doi: 10.1088/1748-6041/2/2/014. Epub 2007 May 8.
Bioactive fluormica-fluorapatite glass-ceramic materials offer a very encouraging solution to the problem of efficient restoration and reconstruction of hard tissues. To produce material with the desired crystalline phases, a five-stage heat treatment must be performed. This thermal processing has a large impact on the microstructure and ultimately the final mechanical properties of the materials. We have examined the thermal processing of one of our most promising machinable biomaterials, using time-resolved small angle neutron scattering and neutron diffraction to study the nucleation and growth of crystallites. The processing route had already been optimized by studying the properties of quenched samples using x-ray diffraction, mechanical measurements and differential thermal analysis. However these results show that the heat treatment can be further optimized in terms of crystal nucleation, and we show that these techniques are the only methods by which a truly optimized thermal processing route may be obtained.
生物活性氟云母-氟磷灰石微晶玻璃材料为硬组织的有效修复和重建问题提供了一个非常令人鼓舞的解决方案。为了生产具有所需晶相的材料,必须进行五阶段热处理。这种热加工对微观结构以及最终材料的机械性能有很大影响。我们使用时间分辨小角中子散射和中子衍射来研究微晶的成核和生长,从而研究了我们最有前景的可加工生物材料之一的热加工过程。通过使用X射线衍射、力学测量和差热分析研究淬火样品的性能,已经对加工路线进行了优化。然而,这些结果表明,热处理在晶体成核方面可以进一步优化,并且我们表明这些技术是获得真正优化的热加工路线的唯一方法。