Suppr超能文献

进化医学:组学、疾病与治疗之间的有意义联系。

Evolutionary medicine: A meaningful connection between omics, disease, and treatment.

作者信息

Abu-Asab Mones, Chaouchi Mohamed, Amri Hakima

机构信息

Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.

出版信息

Proteomics Clin Appl. 2008 Feb;2(2):122-134. doi: 10.1002/prca.200780047.

Abstract

The evolutionary nature of diseases requires that their omics be analyzed by evolution-compatible analytical tools such as parsimony phylogenetics in order to reveal common mutations and pathways' modifications. Since the heterogeneity of the omics data renders some analytical tools such as phenetic clustering and Bayesian likelihood inefficient, a parsimony phylogenetic paradigm seems to connect between the omics and medicine. It offers a seamless, dynamic, predictive, and multidimensional analytical approach that reveals biological classes, and disease ontogenies; its analysis can be translated into practice for early detection, diagnosis, biomarker identification, prognosis, and assessment of treatment. Parsimony phylogenetics identifies classes of specimens, the clades, by their shared derived expressions, the synapomorphies, which are also the potential biomarkers for the classes that they delimit. Synapomorphies are determined through polarity assessment (ancestral vs. derived) of m/z or gene-expression values and parsimony analysis; this process also permits intra and interplatform comparability and produces higher concordance between platforms. Furthermore, major trends in the data are also interpreted from the graphical representation of the data as a tree diagram termed cladogram; it depicts directionality of change, identifies the transitional patterns from healthy to diseased, and can be developed into a predictive tool for early detection.

摘要

疾病的进化本质要求通过诸如简约系统发育学等与进化兼容的分析工具来分析其组学,以便揭示常见突变和通路修饰。由于组学数据的异质性使得诸如表型聚类和贝叶斯似然性等一些分析工具效率低下,简约系统发育范式似乎在组学与医学之间建立了联系。它提供了一种无缝、动态、预测性和多维的分析方法,可揭示生物类别和疾病个体发生;其分析结果可转化为实践应用于早期检测、诊断、生物标志物识别、预后评估和治疗评估。简约系统发育学通过标本的共享衍生表达(即共衍征)来识别标本类别(即进化枝),这些共衍征也是它们所界定类别的潜在生物标志物。共衍征通过对质荷比或基因表达值进行极性评估(祖先型与衍生型)以及简约分析来确定;这个过程还允许进行平台内和平台间的可比性比较,并在不同平台之间产生更高的一致性。此外,数据中的主要趋势也可以从作为树形图(称为分支图)的数据图形表示中进行解读;它描绘了变化的方向性,识别从健康到患病的过渡模式,并可发展成为一种用于早期检测的预测工具。

相似文献

1
Evolutionary medicine: A meaningful connection between omics, disease, and treatment.
Proteomics Clin Appl. 2008 Feb;2(2):122-134. doi: 10.1002/prca.200780047.
2
Biomarkers in the age of omics: time for a systems biology approach.
OMICS. 2011 Mar;15(3):105-12. doi: 10.1089/omi.2010.0023. Epub 2011 Feb 14.
4
Computational Tools for Parsimony Phylogenetic Analysis of Omics Data.
OMICS. 2015 Aug;19(8):471-7. doi: 10.1089/omi.2015.0018. Epub 2015 Jun 3.
6
Identifying early events of gene expression in breast cancer with systems biology phylogenetics.
Cytogenet Genome Res. 2013;139(3):206-14. doi: 10.1159/000348433. Epub 2013 Apr 3.
7
Endometriosis gene expression heterogeneity and biosignature: a phylogenetic analysis.
Obstet Gynecol Int. 2011;2011:719059. doi: 10.1155/2011/719059. Epub 2011 Dec 13.

引用本文的文献

1
PhyloOncology: Understanding cancer through phylogenetic analysis.
Biochim Biophys Acta Rev Cancer. 2017 Apr;1867(2):101-108. doi: 10.1016/j.bbcan.2016.10.006. Epub 2016 Oct 31.
5
Computational Tools for Parsimony Phylogenetic Analysis of Omics Data.
OMICS. 2015 Aug;19(8):471-7. doi: 10.1089/omi.2015.0018. Epub 2015 Jun 3.
6
Systems Biology Profiling of AMD on the Basis of Gene Expression.
J Ophthalmol. 2013;2013:453934. doi: 10.1155/2013/453934. Epub 2013 Nov 14.
7
Identifying early events of gene expression in breast cancer with systems biology phylogenetics.
Cytogenet Genome Res. 2013;139(3):206-14. doi: 10.1159/000348433. Epub 2013 Apr 3.
8
Cancer heterogeneity: origins and implications for genetic association studies.
Trends Genet. 2012 Nov;28(11):538-43. doi: 10.1016/j.tig.2012.07.001. Epub 2012 Jul 31.
10
Endometriosis gene expression heterogeneity and biosignature: a phylogenetic analysis.
Obstet Gynecol Int. 2011;2011:719059. doi: 10.1155/2011/719059. Epub 2011 Dec 13.

本文引用的文献

1
Success of Parsimony in the Four-Taxon Case: Long-Branch Repulsion by Likelihood in the Farris Zone.
Cladistics. 1998 Sep;14(3):209-220. doi: 10.1111/j.1096-0031.1998.tb00334.x.
2
Phylogeny of mixture models: robustness of maximum likelihood and non-identifiable distributions.
J Comput Biol. 2007 Mar;14(2):156-89. doi: 10.1089/cmb.2006.0126.
4
Pitfalls of heterogeneous processes for phylogenetic reconstruction.
Syst Biol. 2007 Feb;56(1):113-24. doi: 10.1080/10635150701245388.
5
Linnaeus at 300: we are family.
Nature. 2007 Mar 15;446(7133):247-9. doi: 10.1038/446247a.
8
Phyloproteomics: what phylogenetic analysis reveals about serum proteomics.
J Proteome Res. 2006 Sep;5(9):2236-40. doi: 10.1021/pr0504485.
9
Medicine needs evolution.
Science. 2006 Feb 24;311(5764):1071. doi: 10.1126/science.1125956.
10
Breakthrough of the year: evolution in action.
Science. 2005 Dec 23;310(5756):1878-9. doi: 10.1126/science.310.5756.1878.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验