文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

头部损伤的转化代谢组学:基于体外核磁共振波谱的代谢物定量分析探索脑代谢功能障碍

Translational Metabolomics of Head Injury: Exploring Dysfunctional Cerebral Metabolism with Ex Vivo NMR Spectroscopy-Based Metabolite Quantification

作者信息

Wolahan Stephanie M, Hirt Daniel, Glenn Thomas C

出版信息


DOI:
PMID:26269925
Abstract

There are four biochemical components that control biological systems by serving as building blocks and as information databases: genes, transcripts, proteins, and metabolites. The study of these four components have become entire fields of biological study and have often been referred to collectively as the omics, including genomics, transcriptomics, proteomics, and metabolomics. The ability to study each of these biological components in great detail and to study the relationship between them has led to significant advances in medical discovery and understanding. The goal of medical systems biology is to integrate all biological information to understand mechanistic information about cellular events and functions that may contribute to disease propensity, development, progression, diagnosis, and/or treatment. Having a systems perspective on human biology is desirable, where details of various system components can be integrated with increasing complexity to better understand properties of the entire system. The systems-oriented approach requires extensive and complex datasets; reliable analytical techniques; thoughtful data integration across platforms; and advanced biostatistical methods. Medical systems biology necessitates an unbiased and comprehensive approach when interpreting experimental results and biological interpretations need to be carefully explained, justified by the data, and tested on larger data sets. Traumatic brain injury (TBI) patients would benefit from a medical systems biology understanding of the systemic dysregulation and cellular changes that follow an insult to the head. A subspecialty in the critical care environment, neurocritical care, evolved from the acceptance that recovery from the primary injury to the brain tissue is affected by systemic alterations that can result in secondary injuries to the brain. The neurological intensive care unit (ICU) has realized significant improvements in patient outcomes due to protocols to address and prevent secondary injuries and due to neurointensivist-led teamwork, both aided by modern technological advances in multimodality neuromonitoring (Elf et al., 2002, Le Roux et al., 2012, Varelas et al., 2006). Considering the notable advances achieved through incorporating a systems-level approach to treating head injury and improving outcomes, in this review we discuss metabolomics applied to TBI. First, we will introduce metabolomics for readers not familiar with the field. Second, we summarize research on the metabolic changes following TBI to highlight what information has been translated to the clinic and what treatments exist. Finally, we discuss metabolomics techniques applied to TBI metabolism, reviewing the examples in the literature, and offering the authors’ suggestions for using NMR spectroscopy to study biofluids from head injured patients. As researchers and clinicians report and validate metabolomics findings, building a medical systems biology perspective on post-TBI metabolic dysfunction is likely to aid in informing physicians’ decisions and in integrating treatments into daily practice. Metabolomics refers to the study of the metabolome, which has been defined as “the quantitative complement of metabolites in a biological system” (Dunn et al., 2011). A metabolome, estimated to contain thousands of compounds, is organism-specific and sample type–specific. The human serum metabolome has been reported to contain 4,229 unique compounds, detection of which involved the use of several analytic techniques, and is still not considered exhaustive (Psychogios et al., 2011). Metabolomics studies aim to discriminate pathological metabolic profiles from that of a normal physiological state and to predict class assignment based on this set of metabolite biomarkers (Baker, 2011; Holmes et al., 2008; Nicholson et al., 2012). The field of metabolomics research consists of several investigative methods. First, there is a distinction to be made between targeted and exploratory metabolomics studies (Lenz and Wilson, 2007). In the latter, the goal is to generate a metabolomic fingerprint for each case and to use multivariate analysis to probe class-specific patterns. Generally, the focus of such studies is not to identify and quantify metabolites nor to propose mechanistic explanations of the results, but rather to predict class assignment based on the metabolomic fingerprint. Targeted metabolomics studies aim to identify and quantify specific metabolites. These metabolites may be hypothesized to be biomarkers of disease progression or may be considered an indicator of the severity of a physiological state. Targeted metabolomics studies may use the same multivariate statistical techniques as the metabolome fingerprint-type studies, but also typically include more traditional univariate and multivariate analyses on the metabolite concentrations. Targeted studies can be targeted to a set of endogenous metabolites or can be targeted to study an exogenous substance, including labeled tracer metabolites or a pharmaceutical. Blood plasma, blood serum, urine, and cerebrospinal fluid (CSF) have been extensively investigated in the metabolomics literature. These biofluids are readily available and are interpreted as an average representation of the surrounding tissue. Researchers working with animal models have access to tissue after sacrifice, which is considerably rarer in human studies. As the field has grown, online metabolite databases containing biological, structural, and experimental information have been developed and are a key tool for metabolomics researchers (Ulrich et al., 2008; Wishart et al., 2007). The term resulted from research in the 1980s and 1990s (Nicholson et al., 1999), yet the concept behind metabolomics was a focus of research for several decades prior. What distinguishes contemporary metabolomics studies from past studies on metabolic changes is the technology available for analyzing such biofluid samples and, therefore, the extent and accuracy of the metabolome quantified. In addition to the larger data set, there have also been computational and statistical advances that make the prospect of drawing meaningful conclusions from thousands of metabolites and the changes that occur between classes possible. With improvements in technology, metabolomics research has reached a level of complexity requiring a multidisciplinary team and has made providing biological rationale for the findings challenging because of data set complexity. The Institute of Medicine of the National Academies published a report on translational omics that issued recommendations for improving the overall quality of the metabolomics research and for translating these findings to the clinical setting (Committee on the Review of Omics-Based Tests for Predicting Patient Outcomes in Clinical Trials, 2012). The use of mass spectrometry (MS)-based and nuclear magnetic resonance (NMR)-based quantification are the most common in the metabolomics literature. Both of these analytical instruments are reliable, accurate, and widely available. There are advantages and disadvantages associated with each, some of which will be briefly mentioned, and the reader is referred to a number of excellent metabolomics review articles (Dunn et al., 2011; Lenz and Wilson, 2007; Nicholson et al., 1999). Because an individual’s metabolome is highly influenced by environment and diet, population studies require a large number of subjects, and the reliability and reproducibility of these analytical techniques is key. The focus of this review is NMR-based metabolomics applied to TBI, but both analytical methods will be described. The reader is referred to extensive review articles focused on the application of MS and/or NMR to metabolomics (Dettmer et al., 2007; Zhang et al., 2010). MS detects compounds in the picomolar concentration range that become ionized after injection into the mass spectrometer; the readout is the mass-to-charge ratio of the detectable compounds in solution. MS-based metabolomics have used gas chromatography MS and liquid chromatography MS. Preparing samples for MS analysis requires extraction of metabolites and may require derivitization, which can be a labor-intensive process. Metabolite extraction involves a series of experimental steps in which metabolite loss can occur and where additional sample-to-sample variability may be introduced. The high sensitivity of MS-based quantification makes it a powerful tool in targeted metabolomics studies. In metabolome fingerprinting studies, it is challenging to measure all compounds with the same efficiency and accuracy for technical reasons. NMR spectroscopy is used to identify and quantify compounds in solution containing elements that are magnetic resonance–detectable (i.e., elemental isotopes that will absorb photons when placed in a magnetic field). NMR is considerably less sensitive than MS and is able to detect concentrations in the micromolar concentration range, but does not destroy the sample in the process of measurement. Application of a radiofrequency field at a known frequency and power excites the spin of the magnetic resonance–detectable isotopes. Spin is a fundamental property of elements akin to mass and charge and both the absorption and emission of radiofrequency photons is nondestructive and noninvasive. Each unique chemical structure in a molecule will resonate in the magnetic field at a specific frequency as the spins relax to equilibrium alignment with the magnetic field. The signal collected by the NMR spectrometer is then Fourier transformed into a NMR spectrum with spectral peaks at specific frequencies corresponding to the molecular structure of the compound being measured. The integrated area of the spectral peaks is proportional to the concentration of the compound. All compounds in solution above a certain concentration will be detected, unlike the variable efficiency of MS-based quantification. There is minimal sample preparation required when compared with MS. There are a number of biologically relevant isotopes that can be measured, including H, C, P, and N. H is the most abundant isotope of hydrogen (99.99%) and, because biologically relevant molecules contain hydrogen, H NMR is widely used. NMR spectrometers are standard equipment in research environments and increased spectral resolution is possible due to the prevalence of high-field spectrometers with field strengths ≥400 MHz (9.4 T). High-resolution magic angle spinning spectroscopy is able to quantify metabolites in intact tissue using solid-state NMR spectrometers (Beckonert et al., 2010). Another aspect of modern metabolomics research is application of multivariate statistical approaches. Unsupervised multivariate techniques such as principal component analysis (PCA) reduce the number of variables to a few principal components. Principal components are orthogonal to one another, are linear combinations of the original data, and can reduce hundreds of input variables to three or four. There are many NMR-based metabolomics fingerprint-type studies that use the complete NMR spectrum as the set of variables. Some metabolomics studies are designed to build a prediction model with supervised multivariate techniques, for example partial least squares (PLS) or PLS-discriminant analysis (PLS-DA) among others (Bylesjo et al., 2006). Most metabolomics studies generate a PCA model of the data to test whether the groups can be reasonably separated based on metabolic information. To build a predictive model, validation is vital and the data set is randomly separated into a larger training set and a smaller test set; the model generated from the training set is then tested on the test set. In reality, metabolomics studies generally quantify fewer than 100 metabolites per sample. Several advances are required to achieve high-throughput quantification of the entire metabolome and to translate metabolomics to the clinical setting. The steps following data collection, including processing and statistical analyses, will be discussed later in this chapter within the context of metabolomics of TBI.

摘要

有四种生化成分通过作为构建模块和信息数据库来控制生物系统:基因、转录本、蛋白质和代谢物。对这四种成分的研究已成为生物学研究的完整领域,并常被统称为组学,包括基因组学、转录组学、蛋白质组学和代谢组学。能够详细研究这些生物成分中的每一种,并研究它们之间的关系,已在医学发现和理解方面取得了重大进展。医学系统生物学的目标是整合所有生物信息,以了解可能导致疾病倾向、发展、进展、诊断和/或治疗的细胞事件和功能的机制信息。从系统角度看待人类生物学是可取的,其中各种系统成分的细节可以随着复杂性的增加而整合,以更好地理解整个系统的特性。面向系统的方法需要广泛而复杂的数据集、可靠的分析技术、跨平台的深入数据整合以及先进的生物统计方法。在解释实验结果时,医学系统生物学需要一种无偏见且全面的方法,生物学解释需要仔细说明、由数据证明合理,并在更大的数据集上进行检验。创伤性脑损伤(TBI)患者将受益于医学系统生物学对头部受伤后全身失调和细胞变化的理解。重症监护环境中的一个亚专业,即神经重症监护,是由于人们认识到从脑组织的原发性损伤中恢复会受到全身改变的影响,而这种改变可能导致脑的继发性损伤而发展起来的。由于处理和预防继发性损伤的方案以及神经重症监护医生主导的团队合作,神经重症监护病房(ICU)在患者预后方面取得了显著改善,这两者都得益于多模态神经监测的现代技术进步(埃尔夫等人,2002年;勒鲁等人,2012年;瓦雷拉斯等人,2006年)。考虑到通过采用系统层面的方法治疗头部损伤并改善预后所取得的显著进展,在本综述中,我们将讨论应用于TBI的代谢组学。首先,我们将为不熟悉该领域的读者介绍代谢组学。其次,我们总结TBI后代谢变化的研究,以突出哪些信息已转化到临床以及现有的治疗方法。最后,我们讨论应用于TBI代谢的代谢组学技术,回顾文献中的实例,并提供作者关于使用核磁共振光谱研究头部受伤患者生物流体的建议。随着研究人员和临床医生报告并验证代谢组学研究结果,建立关于TBI后代谢功能障碍的医学系统生物学观点可能有助于为医生的决策提供信息,并将治疗方法整合到日常实践中。代谢组学是指对代谢组的研究,代谢组被定义为“生物系统中代谢物的定量补充”(邓恩等人,2011年)。一个代谢组估计包含数千种化合物,具有生物体特异性和样本类型特异性。据报道,人血清代谢组包含4229种独特化合物,对其检测涉及使用多种分析技术,且仍未被认为是详尽无遗的(普西奥吉奥斯等人,2011年)。代谢组学研究旨在区分病理代谢谱与正常生理状态的代谢谱,并基于这组代谢物生物标志物预测类别归属(贝克,2011年;霍姆斯等人,2008年;尼科尔森等人,2012年)。代谢组学研究领域包括几种研究方法。首先,靶向代谢组学研究和探索性代谢组学研究之间存在区别(伦茨和威尔逊,2007年)。在后者中,目标是为每个病例生成一个代谢组指纹,并使用多变量分析来探究类别特异性模式。一般来说,此类研究的重点不是识别和定量代谢物,也不是对结果提出机制性解释,而是基于代谢组指纹预测类别归属。靶向代谢组学研究旨在识别和定量特定代谢物。这些代谢物可能被假设为疾病进展的生物标志物,或者可能被视为生理状态严重程度的指标。靶向代谢组学研究可能使用与代谢组指纹类型研究相同的多变量统计技术,但通常也包括对代谢物浓度进行更传统的单变量和多变量分析。靶向研究可以针对一组内源性代谢物,也可以针对研究外源性物质,包括标记的示踪代谢物或药物。血浆、血清、尿液和脑脊液(CSF)在代谢组学文献中已被广泛研究。这些生物流体很容易获得,并被解释为周围组织的平均代表。使用动物模型的研究人员在动物处死后可以获取组织,这在人体研究中要少见得多。随着该领域的发展,已经开发了包含生物学、结构和实验信息的在线代谢物数据库,这些数据库是代谢组学研究人员的关键工具(乌尔里希等人,2008年;威沙特等人,2007年)。这个术语源于20世纪80年代和90年代的研究(尼科尔森等人,1999年),然而代谢组学背后的概念在此之前几十年一直是研究的重点。当代代谢组学研究与过去关于代谢变化的研究的区别在于可用于分析此类生物流体样本的技术,以及因此所量化的代谢组的范围和准确性。除了更大的数据集外,还在计算和统计方面取得了进展,这使得从数千种代谢物及其类别之间发生的变化中得出有意义结论成为可能。随着技术的进步,代谢组学研究已经达到了一个需要多学科团队的复杂程度,并且由于数据集的复杂性,为研究结果提供生物学依据也具有挑战性。美国国家科学院医学研究所发表了一份关于转化组学的报告,该报告就提高代谢组学研究的整体质量以及将这些发现转化到临床环境中提出了建议(临床试验中基于组学的预测患者预后测试审查委员会,2012年)。在代谢组学文献中,基于质谱(MS)和基于核磁共振(NMR)的定量方法最为常用。这两种分析仪器都可靠、准确且广泛可用。每种方法都有其优缺点,其中一些将简要提及,读者可参考一些优秀的代谢组学综述文章(邓恩等人,2011年;伦茨和威尔逊,2007年;尼科尔森等人,1999年)。由于个体的代谢组受到环境和饮食的高度影响,人群研究需要大量的受试者,并且这些分析技术的可靠性和可重复性是关键。本综述的重点是应用于TBI的基于NMR的代谢组学,但将描述这两种分析方法。读者可参考专注于MS和/或NMR在代谢组学中的应用的广泛综述文章(德特默等人,2007年;张等人,2010年)。MS检测皮摩尔浓度范围内的化合物,这些化合物在注入质谱仪后会被电离;读出的是溶液中可检测化合物的质荷比。基于MS的代谢组学使用气相色谱 - MS和液相色谱 - MS。为MS分析准备样品需要提取代谢物,可能还需要衍生化,这可能是一个劳动密集型过程。代谢物提取涉及一系列实验步骤,在此过程中可能会发生代谢物损失,并且可能会引入额外的样本间变异性。基于MS的定量方法的高灵敏度使其成为靶向代谢组学研究中的强大工具。在代谢组指纹研究中,由于技术原因,以相同的效率和准确性测量所有化合物具有挑战性。核磁共振光谱用于识别和定量溶液中含有可磁共振检测元素(即置于磁场中会吸收光子的元素同位素)的化合物。NMR的灵敏度远低于MS,能够检测微摩尔浓度范围内的浓度,但在测量过程中不会破坏样品。以已知频率和功率施加射频场会激发可磁共振检测同位素的自旋。自旋是元素的一种基本属性,类似于质量和电荷,射频光子的吸收和发射都是非破坏性和非侵入性的。分子中的每个独特化学结构在磁场中会以特定频率共振,因为自旋会弛豫到与磁场的平衡排列。然后,NMR光谱仪收集的信号会被傅里叶变换为NMR光谱,光谱峰在特定频率处,对应于被测化合物的分子结构。光谱峰的积分面积与化合物的浓度成正比。与基于MS的定量方法的可变效率不同,溶液中高于一定浓度的所有化合物都会被检测到。与MS相比,所需的样品制备最少。有许多生物学相关的同位素可以被测量,包括H、C、P和N。H是氢的最丰富同位素(99.99%),并且由于生物学相关分子都含有氢,1H NMR被广泛使用。NMR光谱仪是研究环境中的标准设备,由于场强≥400 MHz(9.4 T)的高场光谱仪的普及,提高光谱分辨率成为可能。高分辨率魔角旋转光谱能够使用固态NMR光谱仪对完整组织中的代谢物进行定量(贝科纳特等人,2010年)。现代代谢组学研究的另一个方面是多变量统计方法的应用。无监督多变量技术,如主成分分析(PCA),将变量数量减少到几个主成分。主成分彼此正交,是原始数据的线性组合,可以将数百个输入变量减少到三或四个。有许多基于NMR的代谢组指纹类型研究使用完整的NMR光谱作为变量集。一些代谢组学研究旨在使用监督多变量技术构建预测模型,例如偏最小二乘法(PLS)或PLS判别分析(PLS - DA)等(拜尔斯约等人,2006年)。大多数代谢组学研究生成数据的PCA模型,以测试基于代谢信息这些组是否可以合理分离。要构建预测模型,验证至关重要,数据集会被随机分为一个较大的训练集和一个较小的测试集;然后在测试集上测试从训练集生成的模型。实际上,代谢组学研究通常每个样品量化少于100种代谢物。要实现对整个代谢组的高通量定量并将代谢组学转化到临床环境中,还需要几项进展。本章稍后将在TBI的代谢组学背景下讨论数据收集后的步骤,包括处理和统计分析。

相似文献

[1]
Translational Metabolomics of Head Injury: Exploring Dysfunctional Cerebral Metabolism with Ex Vivo NMR Spectroscopy-Based Metabolite Quantification

2015

[2]
Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.

Cochrane Database Syst Rev. 2022-2-1

[3]
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).

Phys Biol. 2013-8

[4]
[Standard technical specifications for methacholine chloride (Methacholine) bronchial challenge test (2023)].

Zhonghua Jie He He Hu Xi Za Zhi. 2024-2-12

[5]
Planning Implications Related to Sterilization-Sensitive Science Investigations Associated with Mars Sample Return (MSR).

Astrobiology. 2022-6

[6]
Engineering Aspects of Olfaction

2013

[7]
Erratum: High-Throughput Identification of Resistance to Pseudomonas syringae pv. Tomato in Tomato using Seedling Flood Assay.

J Vis Exp. 2023-10-18

[8]
The future of Cochrane Neonatal.

Early Hum Dev. 2020-11

[9]
Pilot Medical Certification

2025-1

[10]
Qualitative Study

2025-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索