Han Jason J, Shaller Andrew D, Wang Wei, Li Alexander D Q
Washington State University, Department of Chemistry, Pullman, Washington 99164, USA.
J Am Chem Soc. 2008 Jun 4;130(22):6974-82. doi: 10.1021/ja078302p. Epub 2008 May 8.
Single molecule fluorescence spectroscopy has been used to probe architecturally diverse and unique model oligomers containing exactly two or four perylene tetracarboxylic diimide (PTDI) units: linear foldamers lin2 and lin4, monocyclic complement cyc2, and concatenated foldable rings cat4. Linear, cyclic, and concatenated foldamers reveal that photoabsorption and excitation induces unfolding and refolding, generating colorful spectral switching from one spectral type to another. Foldamer architectures dictate the unfolding and refolding processes, and hence the spectral dynamics. As a result, linear tetramer exhibits active frame-to-frame spectral switching accompanying dramatic changes in colors, but a concatenated tetramer displays a multicolored composite spectrum with little or no spectral switching. Excited state dynamics causes spectral switching: an electronically decoupled PTDI monomer emits green fluorescence while electronically coupled PTDI pi-stacks emit red fluorescence, with longer pi-stacks emitting redder fluorescence. A key question we address is the excited-state delocalization length, or the exciton coherence length, in the pi-stacks, which has been proven difficult to measure directly. Using foldamers having controlled sequences, structures, and well-defined length and chromophore numbers, we have mapped out the exciton coherence length in pi-stacks. Single molecule fluorescence studies on chromophoric foldamers reveal that the maximum domain length is delocalized across just four pi-stacked PTDI dyes and no new pure color can be found for oligomers beyond the tetramer. Therefore, the range of fluorescent colors in pi-stacks is a function of the number of chromophores only up to the tetramer.
单分子荧光光谱已被用于探测结构多样且独特的模型低聚物,这些低聚物恰好包含两个或四个苝四羧酸二酰亚胺(PTDI)单元:线性折叠体lin2和lin4、单环互补体cyc2以及串联可折叠环cat4。线性、环状和串联折叠体表明,光吸收和激发会诱导展开和重新折叠,产生从一种光谱类型到另一种光谱类型的多彩光谱切换。折叠体结构决定了展开和重新折叠过程,进而决定了光谱动力学。因此,线性四聚体表现出伴随颜色剧烈变化的活跃的逐帧光谱切换,但串联四聚体显示出多色复合光谱,几乎没有或没有光谱切换。激发态动力学导致光谱切换:电子解耦的PTDI单体发出绿色荧光,而电子耦合的PTDI π堆积体发出红色荧光,π堆积体越长,发出的荧光越红。我们解决的一个关键问题是π堆积体中的激发态离域长度,即激子相干长度,事实证明直接测量它很困难。通过使用具有可控序列、结构、明确长度和发色团数量的折叠体,我们绘制出了π堆积体中的激子相干长度。对发色团折叠体的单分子荧光研究表明,最大域长度仅在四个π堆积的PTDI染料上离域,并且对于四聚体以上的低聚物找不到新的纯色。因此,π堆积体中荧光颜色的范围仅在四聚体之前是发色团数量的函数。