Suppr超能文献

从人类遗传学和基因组学到药物遗传学和药物基因组学:过去的经验教训与未来的发展方向。

From human genetics and genomics to pharmacogenetics and pharmacogenomics: past lessons, future directions.

作者信息

Nebert Daniel W, Zhang Ge, Vesell Elliot S

机构信息

Division of Human Genetics, Department of Pediatrics & Molecular Developmental Biology, Cincinnati, Ohio 45267-0056, USA.

出版信息

Drug Metab Rev. 2008;40(2):187-224. doi: 10.1080/03602530801952864.

Abstract

A brief history of human genetics and genomics is provided, comparing recent progress in those fields with that in pharmacogenetics and pharmacogenomics, which are subsets of genetics and genomics, respectively. Sequencing of the entire human genome, the mapping of common haplotypes of single-nucleotide polymorphisms (SNPs), and cost-effective genotyping technologies leading to genome-wide association (GWA) studies - have combined convincingly in the past several years to demonstrate the requirements needed to separate true associations from the plethora of false positives. While research in human genetics has moved from monogenic to oligogenic to complex diseases, its pharmacogenetics branch has followed, usually a few years behind. The continuous discoveries, even today, of new surprises about our genome cause us to question reviews declaring that "personalized medicine is almost here" or that "individualized drug therapy will soon be a reality." As summarized herein, numerous reasons exist to show that an "unequivocal genotype" or even an "unequivocal phenotype" is virtually impossible to achieve in current limited-size studies of human populations. This problem (of insufficiently stringent criteria) leads to a decrease in statistical power and, consequently, equivocal interpretation of most genotype-phenotype association studies. It remains unclear whether personalized medicine or individualized drug therapy will ever be achievable by means of DNA testing alone.

摘要

本文简要介绍了人类遗传学和基因组学的历史,将这些领域的最新进展与药物遗传学和药物基因组学的进展进行了比较,后两者分别是遗传学和基因组学的子领域。在过去几年中,整个人类基因组测序、单核苷酸多态性(SNP)常见单倍型图谱绘制以及促成全基因组关联(GWA)研究的经济高效基因分型技术——这些成果令人信服地结合在一起,展示了从大量假阳性结果中分离出真正关联所需的条件。虽然人类遗传学研究已从单基因疾病转向寡基因疾病再到复杂疾病,但其药物遗传学分支通常会滞后几年。即使在今天,关于我们基因组的新发现仍不断带来惊喜,这让我们对那些宣称“个性化医疗即将到来”或“个体化药物治疗很快将成为现实”的评论产生质疑。如本文所述,有诸多理由表明,在目前针对人类群体的有限规模研究中,几乎不可能实现“明确的基因型”甚至“明确的表型”。这个(标准不够严格的)问题导致统计效力下降,进而使得大多数基因型 - 表型关联研究的解释模棱两可。仅通过DNA检测能否实现个性化医疗或个体化药物治疗仍不明确。

相似文献

2
Primer on medical genomics part I: History of genetics and sequencing of the human genome.
Mayo Clin Proc. 2002 Aug;77(8):773-82. doi: 10.4065/77.8.773.
3
The human genome at ten.
Nature. 2010 Apr 1;464(7289):649-50. doi: 10.1038/464649a.
4
Multiple personal genomes await.
Nature. 2010 Apr 1;464(7289):676-7. doi: 10.1038/464676a.
5
Pharmacogenetics and pharmacogenomics: why is this relevant to the clinical geneticist?
Clin Genet. 1999 Oct;56(4):247-58. doi: 10.1034/j.1399-0004.1999.560401.x.
6
Human genetics: international projects and personalized medicine.
Drug Metab Pers Ther. 2016 Mar;31(1):3-8. doi: 10.1515/dmpt-2015-0032.
8
Pharmacogenetics and genotyping: on the trail of SNPs.
Nature. 2003 Apr 24;422(6934):917, 919, 921, 923. doi: 10.1038/422917a.
9
Has the revolution arrived?
Nature. 2010 Apr 1;464(7289):674-5. doi: 10.1038/464674a.
10
Opportunities and Challenges in Cardiovascular Pharmacogenomics: From Discovery to Implementation.
Circ Res. 2018 Apr 27;122(9):1176-1190. doi: 10.1161/CIRCRESAHA.117.310965.

引用本文的文献

1
Drug-microbiota interactions: an emerging priority for precision medicine.
Signal Transduct Target Ther. 2023 Oct 9;8(1):386. doi: 10.1038/s41392-023-01619-w.
2
Genome-scale metabolic reconstruction of 7,302 human microorganisms for personalized medicine.
Nat Biotechnol. 2023 Sep;41(9):1320-1331. doi: 10.1038/s41587-022-01628-0. Epub 2023 Jan 19.
4
Sources of Interindividual Variability.
Methods Mol Biol. 2021;2342:481-550. doi: 10.1007/978-1-0716-1554-6_17.
5
Rare Coding Variants Associated with Breast Cancer.
Adv Exp Med Biol. 2021;1187:435-453. doi: 10.1007/978-981-32-9620-6_23.
6
A Review of the Important Role of in Pharmacogenomics.
Genes (Basel). 2020 Oct 30;11(11):1295. doi: 10.3390/genes11111295.
7
Quantitative systems pharmacology and the personalized drug-microbiota-diet axis.
Curr Opin Syst Biol. 2017 Aug;4:43-52. doi: 10.1016/j.coisb.2017.06.001.
8
Noncoding microRNAs: small RNAs play a big role in regulation of ADME?
Acta Pharm Sin B. 2012 Apr;2(2):93-101. doi: 10.1016/j.apsb.2012.02.011. Epub 2012 Mar 31.
9
Effect of probiotics on obesity-related markers per enterotype: a double-blind, placebo-controlled, randomized clinical trial.
EPMA J. 2020 Feb 7;11(1):31-51. doi: 10.1007/s13167-020-00198-y. eCollection 2020 Mar.
10
Proteomics and metabolomics in ageing research: from biomarkers to systems biology.
Essays Biochem. 2017 Jul 11;61(3):379-388. doi: 10.1042/EBC20160083. Print 2017 Jul 15.

本文引用的文献

3
Drug-induced epigenetic changes produce drug tolerance.
PLoS Biol. 2007 Oct 16;5(10):e265. doi: 10.1371/journal.pbio.0050265.
4
Power to detect risk alleles using genome-wide tag SNP panels.
PLoS Genet. 2007 Oct;3(10):1827-37. doi: 10.1371/journal.pgen.0030170. Epub 2007 Aug 22.
5
The NCBI dbGaP database of genotypes and phenotypes.
Nat Genet. 2007 Oct;39(10):1181-6. doi: 10.1038/ng1007-1181.
6
Population genomics of human gene expression.
Nat Genet. 2007 Oct;39(10):1217-24. doi: 10.1038/ng2142. Epub 2007 Sep 16.
7
The diploid genome sequence of an individual human.
PLoS Biol. 2007 Sep 4;5(10):e254. doi: 10.1371/journal.pbio.0050254.
9
Bayesian inference of epistatic interactions in case-control studies.
Nat Genet. 2007 Sep;39(9):1167-73. doi: 10.1038/ng2110. Epub 2007 Aug 26.
10
Quantitative characteristics of gene regulation by small RNA.
PLoS Biol. 2007 Sep;5(9):e229. doi: 10.1371/journal.pbio.0050229.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验