Melzer David, Perry John R B, Hernandez Dena, Corsi Anna-Maria, Stevens Kara, Rafferty Ian, Lauretani Fulvio, Murray Anna, Gibbs J Raphael, Paolisso Giuseppe, Rafiq Sajjad, Simon-Sanchez Javier, Lango Hana, Scholz Sonja, Weedon Michael N, Arepalli Sampath, Rice Neil, Washecka Nicole, Hurst Alison, Britton Angela, Henley William, van de Leemput Joyce, Li Rongling, Newman Anne B, Tranah Greg, Harris Tamara, Panicker Vijay, Dayan Colin, Bennett Amanda, McCarthy Mark I, Ruokonen Aimo, Jarvelin Marjo-Riitta, Guralnik Jack, Bandinelli Stefania, Frayling Timothy M, Singleton Andrew, Ferrucci Luigi
Department of Epidemiology and Public Health, Institute of Biomedical and Clinical Sciences, Peninsula College of Medicine and Dentistry, University of Exeter, Devon, United Kingdom.
PLoS Genet. 2008 May 9;4(5):e1000072. doi: 10.1371/journal.pgen.1000072.
There is considerable evidence that human genetic variation influences gene expression. Genome-wide studies have revealed that mRNA levels are associated with genetic variation in or close to the gene coding for those mRNA transcripts - cis effects, and elsewhere in the genome - trans effects. The role of genetic variation in determining protein levels has not been systematically assessed. Using a genome-wide association approach we show that common genetic variation influences levels of clinically relevant proteins in human serum and plasma. We evaluated the role of 496,032 polymorphisms on levels of 42 proteins measured in 1200 fasting individuals from the population based InCHIANTI study. Proteins included insulin, several interleukins, adipokines, chemokines, and liver function markers that are implicated in many common diseases including metabolic, inflammatory, and infectious conditions. We identified eight Cis effects, including variants in or near the IL6R (p = 1.8x10(-57)), CCL4L1 (p = 3.9x10(-21)), IL18 (p = 6.8x10(-13)), LPA (p = 4.4x10(-10)), GGT1 (p = 1.5x10(-7)), SHBG (p = 3.1x10(-7)), CRP (p = 6.4x10(-6)) and IL1RN (p = 7.3x10(-6)) genes, all associated with their respective protein products with effect sizes ranging from 0.19 to 0.69 standard deviations per allele. Mechanisms implicated include altered rates of cleavage of bound to unbound soluble receptor (IL6R), altered secretion rates of different sized proteins (LPA), variation in gene copy number (CCL4L1) and altered transcription (GGT1). We identified one novel trans effect that was an association between ABO blood group and tumour necrosis factor alpha (TNF-alpha) levels (p = 6.8x10(-40)), but this finding was not present when TNF-alpha was measured using a different assay , or in a second study, suggesting an assay-specific association. Our results show that protein levels share some of the features of the genetics of gene expression. These include the presence of strong genetic effects in cis locations. The identification of protein quantitative trait loci (pQTLs) may be a powerful complementary method of improving our understanding of disease pathways.
有大量证据表明人类基因变异会影响基因表达。全基因组研究显示,mRNA水平与编码这些mRNA转录本的基因内部或附近的基因变异相关——顺式效应,以及基因组其他位置的变异——反式效应。基因变异在决定蛋白质水平方面的作用尚未得到系统评估。我们采用全基因组关联方法,证明常见基因变异会影响人血清和血浆中临床相关蛋白质的水平。我们在基于人群的InCHIANTI研究中,对1200名空腹个体所测的42种蛋白质水平,评估了496,032个多态性位点的作用。这些蛋白质包括胰岛素、几种白细胞介素、脂肪因子、趋化因子以及肝功能标志物,它们与包括代谢、炎症和感染性疾病在内的多种常见疾病有关。我们鉴定出8种顺式效应,包括IL6R(p = 1.8x10(-57))、CCL4L1(p = 3.9x10(-21))、IL18(p = 6.8x10(-13))、LPA(p = 4.4x10(-10))、GGT1(p = 1.5x10(-7))、SHBG(p = 3.1x10(-7))、CRP(p = 6.4x10(-6))和IL1RN(p = 7.3x10(-6))基因内部或附近的变异,所有这些变异均与其各自的蛋白质产物相关,每个等位基因的效应大小在0.19至0.69个标准差之间。涉及的机制包括结合型与游离型可溶性受体(IL6R)的裂解速率改变、不同大小蛋白质的分泌速率改变(LPA)、基因拷贝数变异(CCL4L1)以及转录改变(GGT1)。我们鉴定出一种新发现的反式效应,即ABO血型与肿瘤坏死因子α(TNF-α)水平之间的关联(p = 6.8x10(-40)),但当使用不同检测方法测量TNF-α时,或者在第二项研究中,该发现并不存在,提示这是一种检测方法特异性关联。我们的结果表明蛋白质水平具有一些基因表达遗传学的特征。这些特征包括顺式位置存在强基因效应。蛋白质数量性状位点(pQTLs)的鉴定可能是一种有力的补充方法,有助于增进我们对疾病途径的理解。