Suppr超能文献

利用分子分类学方法对水生环境中的小单孢菌进行表征。

Characterisation of micromonosporae from aquatic environments using molecular taxonomic methods.

作者信息

Maldonado Luis A, Stach James E M, Ward Alan C, Bull Alan T, Goodfellow Michael

机构信息

Instituto de Ciencias del Mar y Limnología (ICMyL), Universidad Nacional Autónoma de México (UNAM), CP 04510 Mexico, DF, Mexico.

出版信息

Antonie Van Leeuwenhoek. 2008 Aug;94(2):289-98. doi: 10.1007/s10482-008-9244-0. Epub 2008 May 9.

Abstract

Large numbers of strains assigned to the genus Micromonospora on the basis of typical colonial and pigmentation features were isolated from diverse aquatic sediments using a standard selective isolation procedure. Two hundred and six isolates and eight representatives of the genus Micromonospora were assigned to 24 multimembered groups based on a numerical analysis of banding patterns generated using BOX and ERIC primers. Representatives of multimembered groups encompassing isolated micromonosporae were the subject of 16S rRNA gene sequencing analyses. Good congruence was found between the molecular fingerprinting and 16S rRNA sequence data indicating that the groups based upon the former are taxonomically meaningful. Nearly all of the isolates that were chosen for the 16S rRNA gene sequencing analyses showed that the ecosystems studied are a rich source of novel micromonosporae. These findings have implications for high throughput screening for novel micromonosporae as BOX and ERIC fingerprinting, which is rapid and reproducible, can be applied as a robust dereplication procedure to indicate which environmental isolates have been cultured previously.

摘要

采用标准的选择性分离程序,从不同的水生沉积物中分离出大量基于典型菌落和色素沉着特征被归类为小单孢菌属的菌株。基于使用BOX和ERIC引物产生的条带模式的数值分析,将206株分离物和8株小单孢菌属代表菌株分为24个多成员组。对包含分离出的小单孢菌的多成员组的代表菌株进行了16S rRNA基因测序分析。在分子指纹图谱和16S rRNA序列数据之间发现了良好的一致性,表明基于前者的分组在分类学上是有意义的。几乎所有被选用于16S rRNA基因测序分析的分离物都表明,所研究的生态系统是新型小单孢菌的丰富来源。这些发现对于新型小单孢菌的高通量筛选具有启示意义,因为BOX和ERIC指纹图谱快速且可重复,可作为一种强大的重复排除程序,以指示哪些环境分离物以前已被培养过。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验