Suppr超能文献

类风湿性关节炎、项目反应理论、布洛姆变换和混合模型。

Rheumatoid arthritis, item response theory, Blom transformation, and mixed models.

作者信息

Kraja Aldi T, Corbett Jon, Ping An, Lin Rosa S, Jacobsen Petra A, Crosswhite Michael, Borecki Ingrid B, Province Michael A

机构信息

Division of Statistical Genomics, Washington University School of Medicine, Division of Statistical Genomics, 4444 Forest Park Boulevard, Campus Box 8506, St, Louis, Missouri 63110, USA.

出版信息

BMC Proc. 2007;1 Suppl 1(Suppl 1):S116. doi: 10.1186/1753-6561-1-s1-s116. Epub 2007 Dec 18.

Abstract

We studied rheumatoid arthritis (RA) in the North American Rheumatoid Arthritis Consortium (NARAC) data (1499 subjects; 757 families). Identical methods were applied for studying RA in the Genetic Analysis Workshop 15 (GAW15) simulated data (with a prior knowledge of the simulation answers). Fifty replications of GAW15 simulated data had 3497 +/- 20 subjects in 1500 nuclear families. Two new statistical methods were applied to transform the original phenotypes on these data, the item response theory (IRT) to create a latent variable from nine classifying predictors and a Blom transformation of the anti-CCP (anti-cyclic citrinullated protein) variable. We performed linear mixed-effects (LME) models to study the additive associations of 404 Illumina-genotyped single-nucleotide polymorphisms (SNPs) on the NARAC data, and of 17,820 SNPs of the GAW15 simulated data. In the GAW15 simulated data, the association with anti-CCP Blom transformation showed a 100% sensitivity for SNP1 located in the major histocompatibility complex gene. In contrast, the association of SNP1 with the IRT latent variable showed only 24% sensitivity. From the simulated data, we conclude that the Blom transformation of the anti-CCP variable produced more reliable results than the latent variable from the qualitative combination of a group of RA risk factors. In the NARAC data, the significant RA-SNPs associations found with both phenotype-transformation methods provided a trend that may point toward dynein and energy control genes. Finer genotyping in the NARAC data would grant more exact evidence for the contributions of chromosome 6 to RA.

摘要

我们在北美类风湿关节炎联盟(NARAC)的数据(1499名受试者;757个家庭)中研究了类风湿关节炎(RA)。在遗传分析研讨会15(GAW15)模拟数据(已知模拟答案)中研究RA时应用了相同的方法。GAW15模拟数据的50次重复中有1500个核心家庭的3497±20名受试者。两种新的统计方法被应用于转换这些数据上的原始表型,即项目反应理论(IRT)从九个分类预测因子创建一个潜在变量,以及抗环瓜氨酸肽(anti-cyclic citrinullated protein,anti-CCP)变量的布洛姆转换。我们进行线性混合效应(LME)模型来研究NARAC数据中404个Illumina基因分型单核苷酸多态性(SNP)以及GAW15模拟数据中17820个SNP的加性关联。在GAW15模拟数据中,与抗CCP布洛姆转换的关联对位于主要组织相容性复合体基因中的SNP1显示出100%的敏感性。相比之下,SNP1与IRT潜在变量的关联仅显示出24%的敏感性。从模拟数据中,我们得出结论,抗CCP变量的布洛姆转换比一组RA危险因素定性组合产生的潜在变量产生更可靠的结果。在NARAC数据中,两种表型转换方法均发现的显著RA-SNP关联提供了一个可能指向动力蛋白和能量控制基因的趋势。对NARAC数据进行更精细的基因分型将为6号染色体对RA的贡献提供更确切的证据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4177/2367565/c02b749a88b4/1753-6561-1-S1-S116-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验