Kraja Aldi T, Corbett Jon, Ping An, Lin Rosa S, Jacobsen Petra A, Crosswhite Michael, Borecki Ingrid B, Province Michael A
Division of Statistical Genomics, Washington University School of Medicine, Division of Statistical Genomics, 4444 Forest Park Boulevard, Campus Box 8506, St, Louis, Missouri 63110, USA.
BMC Proc. 2007;1 Suppl 1(Suppl 1):S116. doi: 10.1186/1753-6561-1-s1-s116. Epub 2007 Dec 18.
We studied rheumatoid arthritis (RA) in the North American Rheumatoid Arthritis Consortium (NARAC) data (1499 subjects; 757 families). Identical methods were applied for studying RA in the Genetic Analysis Workshop 15 (GAW15) simulated data (with a prior knowledge of the simulation answers). Fifty replications of GAW15 simulated data had 3497 +/- 20 subjects in 1500 nuclear families. Two new statistical methods were applied to transform the original phenotypes on these data, the item response theory (IRT) to create a latent variable from nine classifying predictors and a Blom transformation of the anti-CCP (anti-cyclic citrinullated protein) variable. We performed linear mixed-effects (LME) models to study the additive associations of 404 Illumina-genotyped single-nucleotide polymorphisms (SNPs) on the NARAC data, and of 17,820 SNPs of the GAW15 simulated data. In the GAW15 simulated data, the association with anti-CCP Blom transformation showed a 100% sensitivity for SNP1 located in the major histocompatibility complex gene. In contrast, the association of SNP1 with the IRT latent variable showed only 24% sensitivity. From the simulated data, we conclude that the Blom transformation of the anti-CCP variable produced more reliable results than the latent variable from the qualitative combination of a group of RA risk factors. In the NARAC data, the significant RA-SNPs associations found with both phenotype-transformation methods provided a trend that may point toward dynein and energy control genes. Finer genotyping in the NARAC data would grant more exact evidence for the contributions of chromosome 6 to RA.
我们在北美类风湿关节炎联盟(NARAC)的数据(1499名受试者;757个家庭)中研究了类风湿关节炎(RA)。在遗传分析研讨会15(GAW15)模拟数据(已知模拟答案)中研究RA时应用了相同的方法。GAW15模拟数据的50次重复中有1500个核心家庭的3497±20名受试者。两种新的统计方法被应用于转换这些数据上的原始表型,即项目反应理论(IRT)从九个分类预测因子创建一个潜在变量,以及抗环瓜氨酸肽(anti-cyclic citrinullated protein,anti-CCP)变量的布洛姆转换。我们进行线性混合效应(LME)模型来研究NARAC数据中404个Illumina基因分型单核苷酸多态性(SNP)以及GAW15模拟数据中17820个SNP的加性关联。在GAW15模拟数据中,与抗CCP布洛姆转换的关联对位于主要组织相容性复合体基因中的SNP1显示出100%的敏感性。相比之下,SNP1与IRT潜在变量的关联仅显示出24%的敏感性。从模拟数据中,我们得出结论,抗CCP变量的布洛姆转换比一组RA危险因素定性组合产生的潜在变量产生更可靠的结果。在NARAC数据中,两种表型转换方法均发现的显著RA-SNP关联提供了一个可能指向动力蛋白和能量控制基因的趋势。对NARAC数据进行更精细的基因分型将为6号染色体对RA的贡献提供更确切的证据。