Suppr超能文献

胸苷激酶2(H126N)基因敲入小鼠显示了平衡的脱氧核苷酸库对线粒体DNA维持的重要作用。

Thymidine kinase 2 (H126N) knockin mice show the essential role of balanced deoxynucleotide pools for mitochondrial DNA maintenance.

作者信息

Akman Hasan O, Dorado Beatriz, López Luis C, García-Cazorla Angeles, Vilà Maya R, Tanabe Lauren M, Dauer William T, Bonilla Eduardo, Tanji Kurenai, Hirano Michio

机构信息

Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA.

出版信息

Hum Mol Genet. 2008 Aug 15;17(16):2433-40. doi: 10.1093/hmg/ddn143. Epub 2008 May 8.

Abstract

Mitochondrial DNA (mtDNA) depletion syndrome (MDS), an autosomal recessive condition, is characterized by variable organ involvement with decreased mtDNA copy number and activities of respiratory chain enzymes in affected tissues. MtDNA depletion has been associated with mutations in nine autosomal genes, including thymidine kinase (TK2), which encodes a ubiquitous mitochondrial protein. To study the pathogenesis of TK2-deficiency, we generated mice harboring an H126N Tk2 mutation. Homozygous Tk2 mutant (Tk2(-/-)) mice developed rapidly progressive weakness after age 10 days and died between ages 2 and 3 weeks. Tk2(-/-) animals showed Tk2 deficiency, unbalanced dNTP pools, mtDNA depletion and defects of respiratory chain enzymes containing mtDNA-encoded subunits that were most prominent in the central nervous system. Histopathology revealed an encephalomyelopathy with prominent vacuolar changes in the anterior horn of the spinal cord. The H126N TK2 mouse is the first knock-in animal model of human MDS and demonstrates that the severity of TK2 deficiency in tissues may determine the organ-specific phenotype.

摘要

线粒体DNA(mtDNA)耗竭综合征(MDS)是一种常染色体隐性疾病,其特征是受累组织中线粒体DNA拷贝数减少以及呼吸链酶活性降低,导致多器官受累情况各异。mtDNA耗竭与九个常染色体基因的突变有关,其中包括胸苷激酶(TK2),该基因编码一种普遍存在的线粒体蛋白。为了研究TK2缺乏症的发病机制,我们培育出了携带H126N Tk2突变的小鼠。纯合Tk2突变体(Tk2(-/-))小鼠在10日龄后迅速出现进行性肌无力,并在2至3周龄时死亡。Tk2(-/-)动物表现出Tk2缺乏、dNTP库失衡、mtDNA耗竭以及含有mtDNA编码亚基的呼吸链酶缺陷,这些在中枢神经系统中最为明显。组织病理学显示为一种脑脊髓病,脊髓前角出现明显的空泡样改变。H126N TK2小鼠是人类MDS的首个基因敲入动物模型,表明组织中TK2缺乏的严重程度可能决定器官特异性表型。

相似文献

2
Deoxypyrimidine monophosphate bypass therapy for thymidine kinase 2 deficiency.
EMBO Mol Med. 2014 Aug;6(8):1016-27. doi: 10.15252/emmm.201404092.
5
Bioavailability and cytosolic kinases modulate response to deoxynucleoside therapy in TK2 deficiency.
EBioMedicine. 2019 Aug;46:356-367. doi: 10.1016/j.ebiom.2019.07.037. Epub 2019 Aug 2.
6
Onset and organ specificity of Tk2 deficiency depends on Tk1 down-regulation and transcriptional compensation.
Hum Mol Genet. 2011 Jan 1;20(1):155-64. doi: 10.1093/hmg/ddq453. Epub 2010 Oct 11.
7
Age-related metabolic changes limit efficacy of deoxynucleoside-based therapy in thymidine kinase 2-deficient mice.
EBioMedicine. 2019 Aug;46:342-355. doi: 10.1016/j.ebiom.2019.07.042. Epub 2019 Jul 24.
8
Mitochondrial deoxyribonucleoside triphosphate pools in thymidine kinase 2 deficiency.
Biochem Biophys Res Commun. 2003 Oct 24;310(3):963-6. doi: 10.1016/j.bbrc.2003.09.104.

引用本文的文献

1
Vitamin B12 supports skeletal muscle oxidative phosphorylation capacity in male mice.
bioRxiv. 2025 Aug 30:2025.05.19.654973. doi: 10.1101/2025.05.19.654973.
2
Mitochondrial DNA depletion syndrome and its cardiac complication.
Front Cardiovasc Med. 2025 Jun 10;12:1582219. doi: 10.3389/fcvm.2025.1582219. eCollection 2025.
3
Advances in Management of Mitochondrial Myopathies.
Int J Mol Sci. 2025 Jun 5;26(11):5411. doi: 10.3390/ijms26115411.
5
Animal Models of Mitochondrial Diseases Associated with Nuclear Gene Mutations.
Acta Naturae. 2023 Oct-Dec;15(4):4-22. doi: 10.32607/actanaturae.25442.
6
NME6: ribonucleotide salvage sustains mitochondrial transcription.
EMBO J. 2023 Sep 18;42(18):e114990. doi: 10.15252/embj.2023114990. Epub 2023 Aug 7.
8
The Finnish genetic heritage in 2022 - from diagnosis to translational research.
Dis Model Mech. 2022 Oct 1;15(10). doi: 10.1242/dmm.049490. Epub 2022 Oct 26.
9
Gene Therapy for Mitochondrial Diseases: Current Status and Future Perspective.
Pharmaceutics. 2022 Jun 17;14(6):1287. doi: 10.3390/pharmaceutics14061287.
10
AAV-vector based gene therapy for mitochondrial disease: progress and future perspectives.
Orphanet J Rare Dis. 2022 Jun 6;17(1):217. doi: 10.1186/s13023-022-02324-7.

本文引用的文献

1
Selective muscle fiber loss and molecular compensation in mitochondrial myopathy due to TK2 deficiency.
J Neurol Sci. 2008 Apr 15;267(1-2):137-41. doi: 10.1016/j.jns.2007.10.019. Epub 2007 Nov 19.
2
Recessive Twinkle mutations in early onset encephalopathy with mtDNA depletion.
Brain. 2007 Nov;130(Pt 11):3032-40. doi: 10.1093/brain/awm242. Epub 2007 Oct 5.
3
Twinkle helicase (PEO1) gene mutation causes mitochondrial DNA depletion.
Ann Neurol. 2007 Dec;62(6):579-87. doi: 10.1002/ana.21207.
5
Disorders of nuclear-mitochondrial intergenomic communication.
Biosci Rep. 2007 Jun;27(1-3):39-51. doi: 10.1007/s10540-007-9036-1.
6
Expression of deoxynucleoside kinases and 5'-nucleotidases in mouse tissues: implications for mitochondrial toxicity.
Biochem Pharmacol. 2007 Jun 30;74(1):169-75. doi: 10.1016/j.bcp.2007.03.029. Epub 2007 Apr 12.
8
Biochemical assays of respiratory chain complex activity.
Methods Cell Biol. 2007;80:93-119. doi: 10.1016/S0091-679X(06)80004-X.
9
Mitochondrial deoxynucleotide pool sizes in mouse liver and evidence for a transport mechanism for thymidine monophosphate.
Proc Natl Acad Sci U S A. 2006 Dec 5;103(49):18586-91. doi: 10.1073/pnas.0609020103. Epub 2006 Nov 21.
10
Clinical spectrum of mitochondrial DNA depletion due to mutations in the thymidine kinase 2 gene.
Arch Neurol. 2006 Aug;63(8):1122-6. doi: 10.1001/archneur.63.8.1122.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验