Suppr超能文献

拟南芥组成型光形态建成9信号体突变体中的生长素反应

Auxin responses in mutants of the Arabidopsis CONSTITUTIVE PHOTOMORPHOGENIC9 signalosome.

作者信息

Dohmann Esther Mirjam Natascha, Levesque Mitchell Paul, Isono Erika, Schmid Markus, Schwechheimer Claus

机构信息

Department of Developmental Genetics, Center for Plant Molecular Biology, Tübingen University, 72076 Tuebingen, Germany.

出版信息

Plant Physiol. 2008 Jul;147(3):1369-79. doi: 10.1104/pp.108.121061. Epub 2008 May 8.

Abstract

The CONSTITUTIVE PHOTOMORPHOGENIC9 (COP9) signalosome (CSN) is an evolutionarily conserved multiprotein complex that interacts with cullin-RING type E3 ubiquitin ligases (CRLs). CSN subunit 5 (CSN5), which, when incorporated into CSN, can deconjugate the NEDD8 modification from the cullin subunit of CRLs, is essential for CSN's role in controlling CRL activity. Whether the CSN5 monomer, which is maintained in csn mutants such as csn3 or csn4, has a functional role, remains to be established. We performed a comparative gene expression-profiling experiment with Arabidopsis (Arabidopsis thaliana) csn3, csn4, and csn5 mutants, and we show here that these mutants cannot be distinguished at the transcriptional level. Furthermore, we show that csn3 csn5 mutants are morphologically indistinguishable from csn3 or csn5 mutants. Taken together, these data suggest that the CSN5 monomer does not have a function that leads to transcriptional or morphological changes in the csn mutants. We further examined auxin responses in csn mutants. Whereas CSN had previously been shown to be required for the auxin response-regulatory E3 complexes, specifically SCF(TIR1), the csn mutant phenotype suggests that CSN is not essential for auxin responses. We present physiological and genetic data that indicate that auxin responses are indeed only partially impaired in csn mutants and that this is not the result of maternally contributed CSN. Finally, we discuss these findings in the context of the current understanding of the role of neddylation and CSN-mediated deneddylation for CRL activity.

摘要

组成型光形态建成9(COP9)信号体(CSN)是一种进化上保守的多蛋白复合体,它与cullin-RING型E3泛素连接酶(CRLs)相互作用。CSN亚基5(CSN5),当整合到CSN中时,能够从CRLs的cullin亚基上去除NEDD8修饰,对于CSN在控制CRL活性方面的作用至关重要。在诸如csn3或csn4等csn突变体中维持的CSN5单体是否具有功能作用,仍有待确定。我们用拟南芥(Arabidopsis thaliana)的csn3、csn4和csn5突变体进行了一项比较基因表达谱实验,并且在此表明这些突变体在转录水平上无法区分。此外,我们表明csn3 csn5突变体在形态上与csn3或csn5突变体无法区分。综合这些数据表明,CSN5单体在csn突变体中不具有导致转录或形态变化的功能。我们进一步检测了csn突变体中的生长素反应。尽管之前已表明CSN是生长素反应调节性E3复合体,特别是SCF(TIR1)所必需的,但csn突变体表型表明CSN对于生长素反应并非必不可少。我们提供了生理和遗传数据,表明生长素反应在csn突变体中确实仅部分受损,并且这不是母本提供的CSN的结果。最后,我们在当前对neddylation和CSN介导的去neddylation对CRL活性作用的理解背景下讨论了这些发现。

相似文献

1
Auxin responses in mutants of the Arabidopsis CONSTITUTIVE PHOTOMORPHOGENIC9 signalosome.
Plant Physiol. 2008 Jul;147(3):1369-79. doi: 10.1104/pp.108.121061. Epub 2008 May 8.
4
DELLA proteins restrain germination and elongation growth in Arabidopsis thaliana COP9 signalosome mutants.
Eur J Cell Biol. 2010 Feb-Mar;89(2-3):163-8. doi: 10.1016/j.ejcb.2009.12.001. Epub 2010 Jan 18.
5
COP9 signalosome- and 26S proteasome-dependent regulation of SCFTIR1 accumulation in Arabidopsis.
J Biol Chem. 2009 Mar 20;284(12):7920-30. doi: 10.1074/jbc.M809069200. Epub 2009 Jan 15.
6
The Arabidopsis COP9 signalosome is essential for G2 phase progression and genomic stability.
Development. 2008 Jun;135(11):2013-22. doi: 10.1242/dev.020743. Epub 2008 Apr 23.
7
Multiple ubiquitin ligase-mediated processes require COP9 signalosome and AXR1 function.
Plant Cell. 2002 Oct;14(10):2553-63. doi: 10.1105/tpc.003434.
8
The COP9 signalosome and its role in plant development.
Eur J Cell Biol. 2010 Feb-Mar;89(2-3):157-62. doi: 10.1016/j.ejcb.2009.11.021. Epub 2009 Dec 24.
10
The COP9 SIGNALOSOME Is Required for Postembryonic Meristem Maintenance in Arabidopsis thaliana.
Mol Plant. 2015 Nov 2;8(11):1623-34. doi: 10.1016/j.molp.2015.08.003. Epub 2015 Aug 12.

引用本文的文献

1
Identification of the Karyopherin Superfamily in Maize and Its Functional Cues in Plant Development.
Int J Mol Sci. 2022 Nov 15;23(22):14103. doi: 10.3390/ijms232214103.
3
Genetic Dissection of Light-Regulated Adventitious Root Induction in Hypocotyls.
Int J Mol Sci. 2022 May 10;23(10):5301. doi: 10.3390/ijms23105301.
4
Plant E3 Ligases and Their Role in Abiotic Stress Response.
Cells. 2022 Mar 4;11(5):890. doi: 10.3390/cells11050890.
6
Extrachloroplastic PP7L Functions in Chloroplast Development and Abiotic Stress Tolerance.
Plant Physiol. 2019 May;180(1):323-341. doi: 10.1104/pp.19.00070. Epub 2019 Feb 13.
7
TCTP and CSN4 control cell cycle progression and development by regulating CULLIN1 neddylation in plants and animals.
PLoS Genet. 2019 Jan 29;15(1):e1007899. doi: 10.1371/journal.pgen.1007899. eCollection 2019 Jan.
8
The Arabidopsis Cop9 signalosome subunit 4 (CNS4) is involved in adventitious root formation.
Sci Rep. 2017 Apr 4;7(1):628. doi: 10.1038/s41598-017-00744-1.
9
Composition, roles, and regulation of cullin-based ubiquitin e3 ligases.
Arabidopsis Book. 2014 Nov 17;12:e0175. doi: 10.1199/tab.0175. eCollection 2014.
10
The NEDD8 modification pathway in plants.
Front Plant Sci. 2014 Mar 21;5:103. doi: 10.3389/fpls.2014.00103. eCollection 2014.

本文引用的文献

1
The Arabidopsis COP9 signalosome is essential for G2 phase progression and genomic stability.
Development. 2008 Jun;135(11):2013-22. doi: 10.1242/dev.020743. Epub 2008 Apr 23.
2
Cop9 signalosome subunit 8 (CSN8) is essential for Drosophila development.
Genes Cells. 2008 Mar;13(3):221-31. doi: 10.1111/j.1365-2443.2008.01164.x.
3
Substrate-mediated regulation of cullin neddylation.
J Biol Chem. 2007 Jun 8;282(23):17032-40. doi: 10.1074/jbc.M701153200. Epub 2007 Apr 17.
4
Mechanism of auxin perception by the TIR1 ubiquitin ligase.
Nature. 2007 Apr 5;446(7136):640-5. doi: 10.1038/nature05731.
6
Regulation of neddylation and deneddylation of cullin1 in SCFSkp2 ubiquitin ligase by F-box protein and substrate.
Proc Natl Acad Sci U S A. 2006 Aug 1;103(31):11515-20. doi: 10.1073/pnas.0603921103. Epub 2006 Jul 21.
8
Linear models and empirical bayes methods for assessing differential expression in microarray experiments.
Stat Appl Genet Mol Biol. 2004;3:Article3. doi: 10.2202/1544-6115.1027. Epub 2004 Feb 12.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验