Suppr超能文献

利用胚胎干细胞进行软骨内骨组织工程。

Endochondral bone tissue engineering using embryonic stem cells.

作者信息

Jukes Jojanneke M, Both Sanne K, Leusink Anouk, Sterk Lotus M Th, van Blitterswijk Clemens A, de Boer Jan

机构信息

Institute for Biomedical Technology, Department of Tissue Regeneration, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The Netherlands.

出版信息

Proc Natl Acad Sci U S A. 2008 May 13;105(19):6840-5. doi: 10.1073/pnas.0711662105. Epub 2008 May 8.

Abstract

Embryonic stem cells can provide an unlimited supply of pluripotent cells for tissue engineering applications. Bone tissue engineering by directly differentiating ES cells (ESCs) into osteoblasts has been unsuccessful so far. Therefore, we investigated an alternative approach, based on the process of endochondral ossification. A cartilage matrix was formed in vitro by mouse ESCs seeded on a scaffold. When these cartilage tissue-engineered constructs (CTECs) were implanted s.c., the cartilage matured, became hypertrophic, calcified, and was ultimately replaced by bone tissue in the course of 21 days. Bone aligning hypertrophic cartilage was observed frequently. Using various chondrogenic differentiation periods in vitro, we demonstrated that a cartilage matrix is required for bone formation by ESCs. Chondrogenic differentiation of mesenchymal stem cells and articular chondrocytes showed that a cartilage matrix alone was not sufficient to drive endochondral bone formation. Moreover, when CTECs were implanted orthotopically into critical-size cranial defects in rats, efficient bone formation was observed. We report previously undescribed ESC-based bone tissue engineering under controlled reproducible conditions. Furthermore, our data indicate that ESCs can also be used as a model system to study endochondral bone formation.

摘要

胚胎干细胞可为组织工程应用提供无限的多能细胞供应。迄今为止,通过将胚胎干细胞(ESCs)直接分化为成骨细胞来进行骨组织工程尚未成功。因此,我们研究了一种基于软骨内成骨过程的替代方法。将小鼠胚胎干细胞接种在支架上,在体外形成软骨基质。当将这些软骨组织工程构建体(CTECs)皮下植入时,软骨成熟、肥大、钙化,并最终在21天内被骨组织替代。经常观察到骨与肥大软骨对齐。利用体外不同的软骨形成分化期,我们证明胚胎干细胞形成骨需要软骨基质。间充质干细胞和关节软骨细胞的软骨形成分化表明,仅软骨基质不足以驱动软骨内骨形成。此外,当将CTECs原位植入大鼠的临界尺寸颅骨缺损时,观察到有效的骨形成。我们报道了在可控的可重复条件下基于胚胎干细胞的骨组织工程,此前未被描述过。此外,我们的数据表明,胚胎干细胞也可用作研究软骨内骨形成的模型系统。

相似文献

1
Endochondral bone tissue engineering using embryonic stem cells.
Proc Natl Acad Sci U S A. 2008 May 13;105(19):6840-5. doi: 10.1073/pnas.0711662105. Epub 2008 May 8.
3
Fractionated human adipose tissue as a native biomaterial for the generation of a bone organ by endochondral ossification.
Acta Biomater. 2018 Sep 1;77:142-154. doi: 10.1016/j.actbio.2018.07.004. Epub 2018 Jul 4.
6
Scaffold-free bioprinted osteogenic and chondrogenic systems to model osteochondral physiology.
Biomed Mater. 2019 Oct 3;14(6):065010. doi: 10.1088/1748-605X/ab4243.
8
Skeletal tissue engineering using embryonic stem cells.
J Tissue Eng Regen Med. 2010 Mar;4(3):165-80. doi: 10.1002/term.234.
9
Specific, Sensitive, and Stable Reporting of Human Mesenchymal Stromal Cell Chondrogenesis.
Tissue Eng Part C Methods. 2019 Mar;25(3):176-190. doi: 10.1089/ten.TEC.2018.0295.
10
Specification of chondrocytes and cartilage tissues from embryonic stem cells.
Development. 2013 Jun;140(12):2597-610. doi: 10.1242/dev.087890.

引用本文的文献

1
Stem Cells in Bone Tissue Engineering: Progress, Promises and Challenges.
Stem Cell Rev Rep. 2024 Oct;20(7):1692-1731. doi: 10.1007/s12015-024-10738-y. Epub 2024 Jul 19.
2
Engineered phalangeal grafts for children with symbrachydactyly: A proof of concept.
J Tissue Eng. 2024 Jun 12;15:20417314241257352. doi: 10.1177/20417314241257352. eCollection 2024 Jan-Dec.
3
Bio-integrated scaffold facilitates large bone regeneration dominated by endochondral ossification.
Bioact Mater. 2024 Feb 2;35:208-227. doi: 10.1016/j.bioactmat.2024.01.019. eCollection 2024 May.
4
Administration of mRNA-Nanomedicine-Augmented Calvarial Defect Healing via Endochondral Ossification.
Pharmaceutics. 2023 Jul 17;15(7):1965. doi: 10.3390/pharmaceutics15071965.
5
Suppressing Chondrocyte Hypertrophy to Build Better Cartilage.
Bioengineering (Basel). 2023 Jun 20;10(6):741. doi: 10.3390/bioengineering10060741.
7
Regeneration of Humeral Head Using a 3D Bioprinted Anisotropic Scaffold with Dual Modulation of Endochondral Ossification.
Adv Sci (Weinh). 2023 Apr;10(12):e2205059. doi: 10.1002/advs.202205059. Epub 2023 Feb 8.
9
Close-to-native bone repair via tissue-engineered endochondral ossification approaches.
iScience. 2022 Oct 14;25(11):105370. doi: 10.1016/j.isci.2022.105370. eCollection 2022 Nov 18.
10
Therapeutic potential of epiphyseal growth plate cells for bone regeneration in an osteoporosis model.
J Tissue Eng. 2022 Aug 11;13:20417314221116754. doi: 10.1177/20417314221116754. eCollection 2022 Jan-Dec.

本文引用的文献

1
Critical Steps toward a tissue-engineered cartilage implant using embryonic stem cells.
Tissue Eng Part A. 2008 Jan;14(1):135-47. doi: 10.1089/ten.a.2006.0397.
2
Tissue engineering with chondrogenically differentiated human embryonic stem cells.
Stem Cells. 2007 Sep;25(9):2183-90. doi: 10.1634/stemcells.2007-0105. Epub 2007 May 31.
3
A rapid and efficient method for expansion of human mesenchymal stem cells.
Tissue Eng. 2007 Jan;13(1):3-9. doi: 10.1089/ten.2005.0513.
5
Cell-based bone tissue engineering.
PLoS Med. 2007 Feb;4(2):e9. doi: 10.1371/journal.pmed.0040009.
6
Effects of culture conditions and bone morphogenetic protein 2 on extent of chondrogenesis from human embryonic stem cells.
Stem Cells. 2007 Apr;25(4):950-60. doi: 10.1634/stemcells.2006-0326. Epub 2007 Jan 11.
7
Chondrogenic differentiation of human embryonic stem cells: the effect of the micro-environment.
Tissue Eng. 2006 Jun;12(6):1687-97. doi: 10.1089/ten.2006.12.1687.
9
A comparison of the osteoinductive potential of two calcium phosphate ceramics implanted intramuscularly in goats.
J Mater Sci Mater Med. 2002 Dec;13(12):1271-5. doi: 10.1023/a:1021191432366.
10
Expansion of bovine chondrocytes on microcarriers enhances redifferentiation.
Tissue Eng. 2003 Oct;9(5):939-48. doi: 10.1089/107632703322495583.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验