Gao Xi, Hu Xiaoming, Qian Li, Yang Sufen, Zhang Wei, Zhang Dan, Wu Xuefei, Fraser Alison, Wilson Belinda, Flood Patrick M, Block Michelle, Hong Jau-Shyong
Neuropharmacology Section, Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA.
Environ Health Perspect. 2008 May;116(5):593-8. doi: 10.1289/ehp.11031.
Parkinson disease (PD), a chronic neurodegenerative disease, has been proposed to be a multifactorial disorder resulting from a combination of environmental mechanisms (chemical, infectious, and traumatic), aging, and genetic deficits. Microglial activation is important in the pathogenesis of PD.
We investigated dopaminergic (DA) neurotoxicity and the underlying mechanisms of formyl-methionyl-leucyl-phenylalanine (fMLP), a bacteria-derived peptide, in relation to PD.
We measured DA neurotoxicity using a DA uptake assay and immunocytochemical staining (ICC) in primary mesencephalic cultures from rodents. Microglial activation was observed via ICC, flow cytometry, and superoxide measurement.
fMLP can cause selective DA neuronal loss at concentrations as low as 10(-13) M. Further, fMLP (10(-13) M) led to a significant reduction in DA uptake capacity in neuron/glia (N/G) cultures, but not in microglia-depleted cultures, indicating an indispensable role of microglia in fMLP-induced neurotoxicity. Using ICC of a specific microglial marker, OX42, we observed morphologic changes in activated microglia after fMLP treatment. Microglial activation after fMLP treatment was confirmed by flow cytometry analysis of major histocompatibility antigen class II expression on a microglia HAPI cell line. Mechanistic studies revealed that fMLP (10(-13) M)-induced increase in the production of extracellular superoxide from microglia is critical in mediating fMLP-elicited neurotoxicity. Pharmacologic inhibition of NADPH oxidase (PHOX) with diphenylene-iodonium or apocynin abolished the DA neurotoxicity of fMLP. N/G cultures from PHOX-deficient (gp91PHOX-/ -) mice were also insensitive to fMLP-induced DA neurotoxicity.
fMLP (10(-13) M) induces DA neurotoxicity through activation of microglial PHOX and subsequent production of superoxide, suggesting a role of fMLP in the central nervous system inflammatory process.
帕金森病(PD)是一种慢性神经退行性疾病,被认为是由环境机制(化学、感染和创伤)、衰老以及基因缺陷共同作用导致的多因素疾病。小胶质细胞激活在帕金森病的发病机制中起重要作用。
我们研究了细菌衍生肽甲酰甲硫氨酰亮氨酰苯丙氨酸(fMLP)与帕金森病相关的多巴胺能(DA)神经毒性及其潜在机制。
我们在啮齿动物原代中脑培养物中使用DA摄取试验和免疫细胞化学染色(ICC)来测量DA神经毒性。通过ICC、流式细胞术和超氧化物测量来观察小胶质细胞激活。
fMLP在低至10^(-13) M的浓度下即可导致选择性DA神经元丢失。此外,fMLP(10^(-13) M)导致神经元/胶质细胞(N/G)培养物中DA摄取能力显著降低,但在去除小胶质细胞的培养物中未出现这种情况,这表明小胶质细胞在fMLP诱导的神经毒性中起不可或缺的作用。使用特异性小胶质细胞标志物OX42进行ICC,我们观察到fMLP处理后活化小胶质细胞的形态变化。通过对小胶质细胞HAPI细胞系上主要组织相容性抗原II类表达的流式细胞术分析证实了fMLP处理后的小胶质细胞激活。机制研究表明,fMLP(10^(-13) M)诱导小胶质细胞胞外超氧化物生成增加在介导fMLP引发的神经毒性中起关键作用。用二苯碘鎓或芹菜素对NADPH氧化酶(PHOX)进行药理学抑制可消除fMLP对DA神经毒性。来自PHOX缺陷(gp91PHOX -/-)小鼠的N/G培养物对fMLP诱导的DA神经毒性也不敏感。
fMLP(10^(-13) M)通过激活小胶质细胞PHOX并随后产生超氧化物诱导DA神经毒性,提示fMLP在中枢神经系统炎症过程中发挥作用。