Fishel L A, Farnum M F, Mauro J M, Miller M A, Kraut J, Liu Y J, Tan X L, Scholes C P
Department of Chemistry, University of California, San Diego, La Jolla 92093.
Biochemistry. 1991 Feb 19;30(7):1986-96. doi: 10.1021/bi00221a036.
The reaction of ferric cytochrome c peroxidase (CcP) from Saccharomyces cerevisiae with peroxide produces compound I, characterized by both an oxyferryl iron center and a protein-based free radical. The electron paramagnetic resonance (EPR) signal of the CcP compound I radical can be resolved into a broad majority component which accounts for approximately 90% of the spin intensity and a narrow minority component which accounts for approximately 10% of the integrated spin intensity [Hori, H., & Yonetani, T. (1985) J. Biol. Chem. 260, 3549-3555]. It was shown previously that the broad component of the compound I radical signal is eliminated by mutation of Trp-191 to Phe [Scholes, C. P., Liu, Y., Fishel, L. F., Farnum, M. F., Mauro, J. M., & Kraut, J. (1989) Isr. J. Chem. 29, 85-92]. The present work probed the effect of mutations in the vicinity of this residue by EPR and electron-nuclear double resonance (ENDOR). These mutations were obtained from a plasmid-encoded form of S. cerevisiae expressed in Escherichia coli [Fishel, L. A., Villafranca, J. E., Mauro, J. M., & Kraut, J. (1987) Biochemistry 26, 351-360]. The EPR line shape and ENDOR signals of the compound I radical were perturbed only by mutations that alter Trp-191 or residues in its immediate vicinity: namely, Met-230 and Met-231, which have sulfur atoms within 4 A of the indole ring, and Asp-235, which forms a hydrogen bond with the indole nitrogen of Trp-191. Mutations of other potential oxidizable sites (tryptophan, tyrosine, methionine, and cysteine) did not alter the EPR line shapes of the compound I radical, although the integrated spin intensities were weaker in some of these mutants. Mutations at Met-230 and/or -231 perturbed the EPR line shapes of the compound I radical signal but did not eliminate it. ENDOR of these two methionine mutants showed alteration to the hyperfine couplings of several strongly coupled protons, which are characteristic of the majority compound I radical electronic structure, and a change in weaker hyperfine couplings, which suggests a different orientation of the radical with respect to its surroundings in the presence of these methionine mutations. Besides the Trp-191----Phe mutation, only the Asp-235----Asn mutation eliminated the broad component of the compound I signal. Loss of the broad compound I EPR signal coincides with both the loss of the Asp----Trp-191 hydrogen-bonding interaction and alteration of the position of the indole ring of Trp-191.(ABSTRACT TRUNCATED AT 400 WORDS)
来自酿酒酵母的铁细胞色素c过氧化物酶(CcP)与过氧化物反应生成化合物I,其特征在于具有一个氧合铁中心和一个基于蛋白质的自由基。CcP化合物I自由基的电子顺磁共振(EPR)信号可分解为一个占自旋强度约90%的宽的主要成分和一个占积分自旋强度约10%的窄的次要成分[堀,H.,与米谷,T.(1985年)《生物化学杂志》260,3549 - 3555]。先前已表明,通过将色氨酸 - 191突变为苯丙氨酸,化合物I自由基信号的宽成分被消除[斯科尔斯,C.P.,刘,Y.,菲舍尔,L.F.,法纳姆,M.F.,毛罗,J.M.,与克劳特,J.(1989年)《以色列化学杂志》29,85 - 92]。本研究通过EPR和电子 - 核双共振(ENDOR)探究了该残基附近突变的影响。这些突变来自在大肠杆菌中表达的酿酒酵母的质粒编码形式[菲舍尔,L.A.,维拉弗兰卡,J.E.,毛罗,J.M.,与克劳特,J.(1987年)《生物化学》26,351 - 360]。化合物I自由基的EPR线形和ENDOR信号仅因改变色氨酸 - 191或其紧邻残基的突变而受到扰动:即甲硫氨酸 - 230和甲硫氨酸 - 231,它们的硫原子在吲哚环的4埃范围内,以及天冬氨酸 - 235,它与色氨酸 - 191的吲哚氮形成氢键。其他潜在可氧化位点(色氨酸、酪氨酸、甲硫氨酸和半胱氨酸)的突变并未改变化合物I自由基的EPR线形,尽管在其中一些突变体中积分自旋强度较弱。甲硫氨酸 - 230和/或 - 231处的突变扰动了化合物I自由基信号的EPR线形,但并未消除它。这两个甲硫氨酸突变体的ENDOR显示,几个强耦合质子的超精细耦合发生了改变,这是主要化合物I自由基电子结构的特征,并且较弱的超精细耦合也发生了变化,这表明在存在这些甲硫氨酸突变的情况下,自由基相对于其周围环境的取向不同。除了色氨酸 - 191突变为苯丙氨酸外,只有天冬氨酸 - 235突变为天冬酰胺消除了化合物I信号的宽成分。化合物I宽EPR信号的丧失与天冬氨酸与色氨酸 - 191氢键相互作用的丧失以及色氨酸 - 191吲哚环位置的改变同时发生。(摘要截于400字)