Wang J M, Mauro M, Edwards S L, Oatley S J, Fishel L A, Ashford V A, Xuong N H, Kraut J
Department of Chemistry, University of California, San Diego, La Jolla 92093.
Biochemistry. 1990 Aug 7;29(31):7160-73. doi: 10.1021/bi00483a003.
The 2.2-A X-ray structure for CCP(MI), a plasmid-encoded form of Saccharomyces cerevisiae cytochrome c peroxidase (CCP) expressed in Escherichia coli [Fishel, L.A., Villafranca, J. E., Mauro, J. M., & Kraut, J. (1987) Biochemistry 26, 351-360], has been solved, together with the structures of three specifically designed single-site heme-cleft mutants. The structure of CCP(MI) was solved by using molecular replacement methods, since its crystals grow differently from the crystals of CCP isolated from bakers' yeast used previously for structural solution. Small distal-side differences between CCP(MI) and bakers' yeast CCP are observed, presumably due to a strain-specific Thr-53----Ile substitution in CCP(MI). A Trp-51----Phe mutant remains pentacoordinated and exhibits only minor distal structural adjustments. The observation of a vacant sixth coordination site in this structure differs from the results of solution resonance Raman studies, which predict hexacoordinated high-spin iron [Smulevich, G., Mauro, J.M., Fishel, L. A., English, A. M., Kraut, J., & Spiro, T. G. (1988) Biochemistry 27, 5477-5485]. The coordination behavior of this W51F mutant is apparently altered in the presence of a precipitating agent, 30% 2-methyl-2,4-pentanediol. A proximal Trp-191----Phe mutant that has substantially diminished enzyme activity and altered magnetic properties [Mauro, J. M., Fishel, L. F., Hazzard, J. T., Meyer, T. E., Tollin, G., Cusanovich, M. A., & Kraut, J. (1988) Biochemistry 27, 6243-6256] accommodates the substitution by allowing the side chain of Phe-191, together with the segment of backbone to which it is attached, to move toward the heme. This relatively large (ca. 1 A) local perturbation is accompanied by numerous small adjustments resulting in a slight overall compression of the enzyme's proximal domain; however, the iron coordination sphere is essentially unchanged. This structure rules out a major alteration in protein conformation as a reason for the dramatically decreased activity of the W191F mutant. Changing proximal Asp-235 to Asn results in two significant localized structural changes. First, the heme iron moves toward the porphyrin plane, and distal water 595 now clearly resides in the iron coordination sphere at a distance of 2.0 A. The observation of hexacoordinated iron for the D235N mutant is in accord with previous resonance Raman results. Second, the indole side chain of Trp-191 has flipped over as a result of the mutation; the tryptophan N epsilon takes part in a new hydrogen bond with the backbone carbonyl oxygen of Leu-177.(ABSTRACT TRUNCATED AT 400 WORDS)
已解析出CCP(MI)的2.2埃X射线结构,它是在大肠杆菌中表达的酿酒酵母细胞色素c过氧化物酶(CCP)的质粒编码形式[菲舍尔,L.A.,维拉弗兰卡,J.E.,毛罗,J.M.,&克劳特,J.(1987年)《生物化学》26,351 - 360],同时还解析出了三个经过特殊设计的单位点血红素裂隙突变体的结构。CCP(MI)的结构是通过分子置换法解析出来的,因为它的晶体生长方式与之前用于结构解析的从面包酵母中分离出的CCP晶体不同。观察到CCP(MI)与面包酵母CCP在远侧存在微小差异,推测这是由于CCP(MI)中存在菌株特异性的苏氨酸 - 53到异亮氨酸的替换。色氨酸 - 51到苯丙氨酸的突变体保持五配位状态,仅表现出微小的远侧结构调整。在该结构中观察到一个空的第六配位位点,这与溶液共振拉曼研究结果不同,后者预测为六配位高自旋铁[斯穆列维奇,G.,毛罗,J.M.,菲舍尔,L.A.,英格利希,A.M.,克劳特,J.,&斯皮罗,T.G.(1988年)《生物化学》27,5477 - 5485]。在沉淀剂30% 2 - 甲基 - 2,4 - 戊二醇存在下,这个W51F突变体的配位行为明显改变。一个近端色氨酸 - 191到苯丙氨酸的突变体,其酶活性大幅降低且磁性质改变[毛罗,J.M.,菲舍尔,L.F.,哈扎德,J.T.,迈耶,T.E.,托林,G.,库萨诺维奇,M.A.,&克劳特,J.(1988年)《生物化学》27,6243 - 6256],通过允许苯丙氨酸 - 191的侧链与其相连的主链片段一起向血红素移动来适应这种替换。这种相对较大(约1埃)的局部扰动伴随着许多微小调整,并导致酶的近端结构域略有整体压缩;然而,铁配位球基本未变。该结构排除了蛋白质构象的重大改变是W191F突变体活性急剧下降的原因。将近端天冬氨酸 - 235替换为天冬酰胺会导致两个显著的局部结构变化。首先,血红素铁向卟啉平面移动,远侧水595现在清晰地位于铁配位球内,距离为2.0埃。D235N突变体六配位铁的观察结果与先前的共振拉曼结果一致。其次,由于突变,色氨酸 - 191的吲哚侧链翻转;色氨酸的Nε与亮氨酸 - 177的主链羰基氧形成新的氢键。(摘要截取自400字)