Vijay N N V, Ajmani Rahul, Perelson Alan S, Dixit Narendra M
Department of Chemical Engineering, Indian Institute of Science, Bangalore 560012, India.
Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
J Gen Virol. 2008 Jun;89(Pt 6):1467-1477. doi: 10.1099/vir.0.83668-0.
Recombination can facilitate the accumulation of mutations and accelerate the emergence of resistance to current antiretroviral therapies for human immunodeficiency virus (HIV) infection. Yet, since recombination can also dissociate favourable combinations of mutations, the benefit of recombination to HIV remains in question. The confounding effects of mutation, multiple infections of cells, random genetic drift and fitness selection that underlie HIV evolution render the influence of recombination difficult to unravel. We developed computer simulations that mimic the genomic diversification of HIV within an infected individual and elucidate the influence of recombination. We find, interestingly, that when the effective population size of HIV is small, recombination increases both the diversity and the mean fitness of the viral population. When the effective population size is large, recombination increases viral fitness but decreases diversity. In effect, recombination enhances (lowers) the likelihood of the existence of multi-drug resistant strains of HIV in infected individuals prior to the onset of therapy when the effective population size is small (large). Our simulations are consistent with several recent experimental observations, including the evolution of HIV diversity and divergence in vivo. The intriguing dependencies on the effective population size appear due to the subtle interplay of drift, selection and epistasis, which we discuss in the light of modern population genetics theories. Current estimates of the effective population size of HIV have large discrepancies. Our simulations present an avenue for accurate determination of the effective population size of HIV in vivo and facilitate establishment of the benefit of recombination to HIV.
重组可促进突变的积累,并加速对当前用于治疗人类免疫缺陷病毒(HIV)感染的抗逆转录病毒疗法产生耐药性。然而,由于重组也可能使有利的突变组合分离,重组对HIV的益处仍存在疑问。HIV进化背后的突变、细胞多重感染、随机遗传漂变和适应性选择等混杂效应,使得重组的影响难以厘清。我们开发了计算机模拟程序,以模拟HIV在受感染个体内的基因组多样化,并阐明重组的影响。有趣的是,我们发现,当HIV的有效种群规模较小时,重组会增加病毒种群的多样性和平均适应性。当有效种群规模较大时,重组会增加病毒适应性,但会降低多样性。实际上,当有效种群规模较小时(较大时),重组会增加(降低)治疗开始前受感染个体中存在HIV多药耐药菌株的可能性。我们的模拟结果与最近的几项实验观察结果一致,包括HIV在体内的多样性和分化演变。对有效种群规模的这种有趣的依赖性似乎是由于漂变、选择和上位性的微妙相互作用所致,我们根据现代群体遗传学理论对此进行了讨论。目前对HIV有效种群规模的估计存在很大差异。我们的模拟为准确确定HIV在体内 的有效种群规模提供了一条途径,并有助于确定重组对HIV的益处。