Suppr超能文献

序列相似性网络揭示了多结构域蛋白的共同祖先。

Sequence similarity network reveals common ancestry of multidomain proteins.

作者信息

Song Nan, Joseph Jacob M, Davis George B, Durand Dannie

机构信息

Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America.

出版信息

PLoS Comput Biol. 2008 May 16;4(4):e1000063. doi: 10.1371/journal.pcbi.1000063.

Abstract

We address the problem of homology identification in complex multidomain families with varied domain architectures. The challenge is to distinguish sequence pairs that share common ancestry from pairs that share an inserted domain but are otherwise unrelated. This distinction is essential for accuracy in gene annotation, function prediction, and comparative genomics. There are two major obstacles to multidomain homology identification: lack of a formal definition and lack of curated benchmarks for evaluating the performance of new methods. We offer preliminary solutions to both problems: 1) an extension of the traditional model of homology to include domain insertions; and 2) a manually curated benchmark of well-studied families in mouse and human. We further present Neighborhood Correlation, a novel method that exploits the local structure of the sequence similarity network to identify homologs with great accuracy based on the observation that gene duplication and domain shuffling leave distinct patterns in the sequence similarity network. In a rigorous, empirical comparison using our curated data, Neighborhood Correlation outperforms sequence similarity, alignment length, and domain architecture comparison. Neighborhood Correlation is well suited for automated, genome-scale analyses. It is easy to compute, does not require explicit knowledge of domain architecture, and classifies both single and multidomain homologs with high accuracy. Homolog predictions obtained with our method, as well as our manually curated benchmark and a web-based visualization tool for exploratory analysis of the network neighborhood structure, are available at http://www.neighborhoodcorrelation.org. Our work represents a departure from the prevailing view that the concept of homology cannot be applied to genes that have undergone domain shuffling. In contrast to current approaches that either focus on the homology of individual domains or consider only families with identical domain architectures, we show that homology can be rationally defined for multidomain families with diverse architectures by considering the genomic context of the genes that encode them. Our study demonstrates the utility of mining network structure for evolutionary information, suggesting this is a fertile approach for investigating evolutionary processes in the post-genomic era.

摘要

我们探讨了具有多样结构域架构的复杂多结构域家族中的同源性识别问题。面临的挑战是区分具有共同祖先的序列对与共享插入结构域但其他方面无关的序列对。这种区分对于基因注释、功能预测和比较基因组学的准确性至关重要。多结构域同源性识别存在两个主要障碍:缺乏正式定义以及缺乏用于评估新方法性能的经过整理的基准。我们针对这两个问题提供了初步解决方案:1)扩展传统的同源性模型以纳入结构域插入;2)对小鼠和人类中经过充分研究的家族进行人工整理的基准。我们还提出了邻域相关性方法,这是一种新颖的方法,它利用序列相似性网络的局部结构,基于基因复制和结构域改组在序列相似性网络中留下不同模式的观察结果,以高精度识别同源物。在使用我们整理的数据进行的严格实证比较中,邻域相关性方法优于序列相似性、比对长度和结构域架构比较。邻域相关性方法非常适合自动化的全基因组规模分析。它易于计算,不需要明确的结构域架构知识,并且能够高精度地对单结构域和多结构域同源物进行分类。通过我们的方法获得的同源物预测结果,以及我们的人工整理基准和用于网络邻域结构探索性分析的基于网络的可视化工具,可在http://www.neighborhoodcorrelation.org获取。我们的工作背离了同源性概念不能应用于经历过结构域改组的基因这一主流观点。与当前要么专注于单个结构域的同源性要么仅考虑具有相同结构域架构的家族的方法不同,我们表明通过考虑编码它们的基因的基因组背景,可以合理地为具有不同架构的多结构域家族定义同源性。我们的研究证明了挖掘网络结构以获取进化信息的实用性,表明这是在后基因组时代研究进化过程的一种富有成效的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/360f/2377100/957e16756caa/pcbi.1000063.g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验