Suppr超能文献

在表达CDK1AF的细胞中,G1期快速循环和早熟终止。

Rapid cycling and precocious termination of G1 phase in cells expressing CDK1AF.

作者信息

Pomerening Joseph R, Ubersax Jeffrey A, Ferrell James E

机构信息

Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305-5174, USA.

出版信息

Mol Biol Cell. 2008 Aug;19(8):3426-41. doi: 10.1091/mbc.e08-02-0172. Epub 2008 May 14.

Abstract

In Xenopus embryos, the cell cycle is driven by an autonomous biochemical oscillator that controls the periodic activation and inactivation of cyclin B1-CDK1. The oscillator circuit includes a system of three interlinked positive and double-negative feedback loops (CDK1 -> Cdc25 -> CDK1; CDK1 -/ Wee1 -/ CDK1; and CDK1 -/ Myt1 -/ CDK1) that collectively function as a bistable trigger. Previous work established that this bistable trigger is essential for CDK1 oscillations in the early embryonic cell cycle. Here, we assess the importance of the trigger in the somatic cell cycle, where checkpoints and additional regulatory mechanisms could render it dispensable. Our approach was to express the phosphorylation site mutant CDK1AF, which short-circuits the feedback loops, in HeLa cells, and to monitor cell cycle progression by live cell fluorescence microscopy. We found that CDK1AF-expressing cells carry out a relatively normal first mitosis, but then undergo rapid cycles of cyclin B1 accumulation and destruction at intervals of 3-6 h. During these cycles, the cells enter and exit M phase-like states without carrying out cytokinesis or karyokinesis. Phenotypically similar rapid cycles were seen in Wee1 knockdown cells. These findings show that the interplay between CDK1, Wee1/Myt1, and Cdc25 is required for the establishment of G1 phase, for the normal approximately 20-h cell cycle period, and for the switch-like oscillations in cyclin B1 abundance characteristic of the somatic cell cycle. We propose that the HeLa cell cycle is built upon an unreliable negative feedback oscillator and that the normal high reliability, slow pace and switch-like character of the cycle is imposed by a bistable CDK1/Wee1/Myt1/Cdc25 system.

摘要

在非洲爪蟾胚胎中,细胞周期由一个自主生化振荡器驱动,该振荡器控制细胞周期蛋白B1 - CDK1的周期性激活和失活。振荡器电路包括一个由三个相互关联的正反馈和双负反馈回路组成的系统(CDK1 -> Cdc25 -> CDK1;CDK1 -/ Wee1 -/ CDK1;以及CDK1 -/ Myt1 -/ CDK1),它们共同作用形成一个双稳态触发器。先前的研究表明,这个双稳态触发器对于早期胚胎细胞周期中CDK1的振荡至关重要。在这里,我们评估该触发器在体细胞周期中的重要性,在体细胞周期中,检查点和其他调节机制可能使其变得可有可无。我们的方法是在HeLa细胞中表达使反馈回路短路的磷酸化位点突变体CDK1AF,并通过活细胞荧光显微镜监测细胞周期进程。我们发现,表达CDK1AF的细胞进行相对正常的第一次有丝分裂,但随后以3 - 6小时的间隔经历细胞周期蛋白B1积累和破坏的快速循环。在这些循环中,细胞进入和退出类似M期的状态,但不进行胞质分裂或核分裂。在Wee1基因敲低的细胞中也观察到了表型相似的快速循环。这些发现表明,CDK1、Wee1/Myt1和Cdc25之间的相互作用对于G1期的建立、正常约20小时的细胞周期时长以及体细胞周期中细胞周期蛋白B1丰度的开关样振荡是必需的。我们提出,HeLa细胞周期建立在一个不可靠的负反馈振荡器之上,而周期正常的高可靠性、缓慢节奏和开关样特征是由双稳态CDK1/Wee1/Myt1/Cdc25系统赋予的。

相似文献

1
Rapid cycling and precocious termination of G1 phase in cells expressing CDK1AF.
Mol Biol Cell. 2008 Aug;19(8):3426-41. doi: 10.1091/mbc.e08-02-0172. Epub 2008 May 14.
3
Mitotic progression becomes irreversible in prometaphase and collapses when Wee1 and Cdc25 are inhibited.
Mol Biol Cell. 2011 Apr 15;22(8):1191-206. doi: 10.1091/mbc.E10-07-0599. Epub 2011 Feb 16.
4
Quantitative reconstitution of mitotic CDK1 activation in somatic cell extracts.
Mol Cell. 2010 Mar 26;37(6):753-67. doi: 10.1016/j.molcel.2010.02.023.
5
Mechanisms governing maintenance of Cdk1/cyclin B1 kinase activity in cells infected with human cytomegalovirus.
J Virol. 2003 Dec;77(24):13214-24. doi: 10.1128/jvi.77.24.13214-13224.2003.
6
Fine tuning the cell cycle: activation of the Cdk1 inhibitory phosphorylation pathway during mitotic exit.
Mol Biol Cell. 2009 Mar;20(6):1737-48. doi: 10.1091/mbc.e08-07-0771. Epub 2009 Jan 21.
7
Coupling of T161 and T14 phosphorylations protects cyclin B-CDK1 from premature activation.
Mol Biol Cell. 2011 Nov;22(21):3971-85. doi: 10.1091/mbc.E11-02-0136. Epub 2011 Sep 7.
8
Role for non-proteolytic control of M-phase-promoting factor activity at M-phase exit.
PLoS One. 2007 Feb 28;2(2):e247. doi: 10.1371/journal.pone.0000247.
9
Tome-1, a trigger of mitotic entry, is degraded during G1 via the APC.
Cell. 2003 Apr 4;113(1):101-13. doi: 10.1016/s0092-8674(03)00232-0.
10
A two-step inactivation mechanism of Myt1 ensures CDK1/cyclin B activation and meiosis I entry.
Curr Biol. 2010 Apr 27;20(8):717-23. doi: 10.1016/j.cub.2010.02.050. Epub 2010 Apr 1.

引用本文的文献

1
Spatiotemporal orchestration of mitosis by cyclin-dependent kinase.
Nature. 2025 Jun 25. doi: 10.1038/s41586-025-09172-y.
2
Newton's cradle: Cell cycle regulation by two mutually inhibitory oscillators.
Math Biosci. 2024 Nov;377:109291. doi: 10.1016/j.mbs.2024.109291. Epub 2024 Sep 4.
4
The oscillation of mitotic kinase governs cell cycle latches in mammalian cells.
J Cell Sci. 2024 Feb 1;137(3). doi: 10.1242/jcs.261364. Epub 2024 Feb 13.
5
The dynamical organization of the core pluripotency transcription factors responds to differentiation cues in early S-phase.
Front Cell Dev Biol. 2023 May 4;11:1125015. doi: 10.3389/fcell.2023.1125015. eCollection 2023.
6
CCNE1 amplification is synthetic lethal with PKMYT1 kinase inhibition.
Nature. 2022 Apr;604(7907):749-756. doi: 10.1038/s41586-022-04638-9. Epub 2022 Apr 20.
10
Bioinformatics Analyses of Potential miRNA-mRNA Regulatory Axis in HBV-related Hepatocellular Carcinoma.
Int J Med Sci. 2021 Jan 1;18(2):335-346. doi: 10.7150/ijms.50126. eCollection 2021.

本文引用的文献

1
Ordered phosphorylation governs oscillation of a three-protein circadian clock.
Science. 2007 Nov 2;318(5851):809-12. doi: 10.1126/science.1148596. Epub 2007 Oct 4.
2
The spindle-assembly checkpoint in space and time.
Nat Rev Mol Cell Biol. 2007 May;8(5):379-93. doi: 10.1038/nrm2163. Epub 2007 Apr 11.
3
Cyclin A2 regulates nuclear-envelope breakdown and the nuclear accumulation of cyclin B1.
Curr Biol. 2007 Jan 9;17(1):85-91. doi: 10.1016/j.cub.2006.11.066.
4
Rescue of a human cell line from endogenous Cdk1 depletion by Cdk1 lacking inhibitory phosphorylation sites.
J Biol Chem. 2007 Feb 16;282(7):4301-4309. doi: 10.1074/jbc.M607910200. Epub 2006 Dec 12.
5
Mitosis: a matter of getting rid of the right protein at the right time.
Trends Cell Biol. 2006 Jan;16(1):55-63. doi: 10.1016/j.tcb.2005.11.006. Epub 2005 Dec 5.
6
Global analysis of protein phosphorylation in yeast.
Nature. 2005 Dec 1;438(7068):679-84. doi: 10.1038/nature04187.
7
Kinetochore structure and function.
Trends Cell Biol. 2005 Nov;15(11):589-98. doi: 10.1016/j.tcb.2005.09.010. Epub 2005 Oct 7.
9
STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx.
Curr Biol. 2005 Jul 12;15(13):1235-41. doi: 10.1016/j.cub.2005.05.055.
10
Silencing gene expression with Dicer-generated siRNA pools.
Methods Mol Biol. 2005;309:93-196. doi: 10.1385/1-59259-935-4:093.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验