Loulergue Laetitia, Schilt Adrian, Spahni Renato, Masson-Delmotte Valérie, Blunier Thomas, Lemieux Bénédicte, Barnola Jean-Marc, Raynaud Dominique, Stocker Thomas F, Chappellaz Jérôme
Laboratoire de Glaciologie et Géophysique de l'Environnement, CNRS-Université Joseph Fourier Grenoble, 54 Rue Molière, 38402 St Martin d'Hères, France.
Nature. 2008 May 15;453(7193):383-6. doi: 10.1038/nature06950.
Atmospheric methane is an important greenhouse gas and a sensitive indicator of climate change and millennial-scale temperature variability. Its concentrations over the past 650,000 years have varied between approximately 350 and approximately 800 parts per 10(9) by volume (p.p.b.v.) during glacial and interglacial periods, respectively. In comparison, present-day methane levels of approximately 1,770 p.p.b.v. have been reported. Insights into the external forcing factors and internal feedbacks controlling atmospheric methane are essential for predicting the methane budget in a warmer world. Here we present a detailed atmospheric methane record from the EPICA Dome C ice core that extends the history of this greenhouse gas to 800,000 yr before present. The average time resolution of the new data is approximately 380 yr and permits the identification of orbital and millennial-scale features. Spectral analyses indicate that the long-term variability in atmospheric methane levels is dominated by approximately 100,000 yr glacial-interglacial cycles up to approximately 400,000 yr ago with an increasing contribution of the precessional component during the four more recent climatic cycles. We suggest that changes in the strength of tropical methane sources and sinks (wetlands, atmospheric oxidation), possibly influenced by changes in monsoon systems and the position of the intertropical convergence zone, controlled the atmospheric methane budget, with an additional source input during major terminations as the retreat of the northern ice sheet allowed higher methane emissions from extending periglacial wetlands. Millennial-scale changes in methane levels identified in our record as being associated with Antarctic isotope maxima events are indicative of ubiquitous millennial-scale temperature variability during the past eight glacial cycles.
大气甲烷是一种重要的温室气体,也是气候变化和千年尺度温度变化的敏感指标。在过去65万年中,其浓度在冰期和间冰期分别在约350至约800体积百万分比(p.p.b.v.)之间变化。相比之下,据报道目前大气甲烷水平约为1770 p.p.b.v.。深入了解控制大气甲烷的外部强迫因素和内部反馈对于预测更温暖世界中的甲烷收支至关重要。在此,我们展示了来自欧洲项目冰芯(EPICA Dome C)的详细大气甲烷记录,该记录将这种温室气体的历史延伸至距今80万年。新数据的平均时间分辨率约为380年,能够识别轨道和千年尺度的特征。光谱分析表明,在距今约40万年之前,大气甲烷水平的长期变化主要由约10万年的冰期 - 间冰期循环主导,而在最近四个气候周期中,岁差分量的贡献不断增加。我们认为,热带甲烷源汇(湿地、大气氧化)强度的变化可能受季风系统变化和热带辐合带位置的影响,控制着大气甲烷收支,在主要冰消期期间,随着北半球冰盖退缩,周边冰川湿地面积扩大,甲烷排放量增加,这构成了额外的源输入。我们记录中识别出的与南极同位素最大值事件相关的甲烷水平千年尺度变化表明,在过去八个冰期循环中普遍存在千年尺度的温度变化。