Ritterbusch F, Wang J S, Feng X, Shackleton S, Bender M, Brook E, Higgins J, Jia Z-H, Jiang W, Lu Z-T, Severinghaus J P, Sun L-T, Yang G-M, Zhao L
Hefei National Research Center for Physical Sciences at the Microscale, School of Physical Sciences, University of Science and Technology of China, Hefei, China.
Hefei National Laboratory, University of Science and Technology of China, Hefei, China.
Nat Commun. 2025 May 12;16(1):4394. doi: 10.1038/s41467-025-59264-6.
Recovering earth's climate history from ice cores requires reliable dating of the ice. Kr is ideal for radiometric dating up to more than one million years, but the isotope is so rare that it has long been a challenge to apply Kr dating on ice cores where sample size is limited. Here, we show Kr dating of 1-kg ice-core samples from Taylor Glacier, Antarctica. This is made possible by an advance in Kr detection with an all-optical realization of Atom Trap Trace Analysis. The achieved sample-size reduction facilitates Kr dating of basal ice-core sections with direct implications for open questions in paleoclimatology, such as the evolution of glaciers on the Tibetan Plateau or the stability of the Greenland and West-Antarctic ice sheets.
从冰芯中恢复地球的气候历史需要对冰进行可靠的年代测定。氪非常适合用于超过一百万年的放射性年代测定,但这种同位素非常罕见,长期以来,在样本量有限的冰芯上应用氪年代测定一直是一项挑战。在这里,我们展示了对来自南极泰勒冰川的1千克冰芯样本进行氪年代测定。通过原子阱痕量分析的全光学实现,氪检测技术的进步使得这成为可能。实现的样本量减少有助于对冰芯底部部分进行氪年代测定,这对古气候学中的一些悬而未决的问题有直接影响,比如青藏高原冰川的演化或格陵兰和西南极冰盖的稳定性。