Suppr超能文献

Stimulation of the ATPase activity of rat brain protein kinase C by phospho acceptor substrates of the enzyme.

作者信息

O'Brian C A, Ward N E

机构信息

Department of Cell Biology, University of Texas M.D. Anderson Cancer Center, Houston 77030.

出版信息

Biochemistry. 1991 Mar 5;30(9):2549-54. doi: 10.1021/bi00223a036.

Abstract

We recently reported that autophosphorylated rat brain protein kinase C (PKC) catalyzes a Ca2(+)- and phosphatidylserine- (PS-) dependent ATPase reaction. The Ca2(+)- and PS-dependent ATPase and histone kinase reactions of PKC each had a Km app(ATP) of 6 microM. Remarkably, the catalytic fragment of PKC lacked detectable ATPase activity. In this paper, we show that subsaturating concentrations of protein substrates accelerate the ATPase reaction catalyzed by PKC and that protein and peptide substrates of PKC induce ATPase catalysis by the catalytic fragment. At subsaturating concentrations, histone III-S and protamine sulfate each accelerated the ATPase activity of PKC in the presence of Ca2+ and PS by as much as 1.5-fold. At saturating concentrations, the protein substrates were inhibitory. Poly(L-lysine) failed to accelerate the ATPase activity, indicating that the acceleration observed with histone III-S and protamine sulfate was not simply a result of their gross physical properties. Furthermore, histone III-S induced the ATPase activity of the catalytic fragment of PKC, at both subsaturating and saturating histone concentrations. The induction of ATPase activity was also elicited by the peptide substrate Arg-Arg-Lys-Ala-Ser-Gly-Pro-Pro-Val, when the peptide was present at concentrations near its Km app. The induction of the ATPase activity by the nonapeptide provides strong evidence that the binding of phospho acceptor substrates to the active site of PKC can stimulate ATP hydrolysis. Taken together, our results indicate that PKC-catalyzed protein phosphorylation is inefficient, since it is accompanied by Pi production.(ABSTRACT TRUNCATED AT 250 WORDS)

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验