Stumpfe Dagmar, Geppert Hanna, Bajorath Jürgen
Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Dahlmannstr. 2, D-53113 Bonn, Germany.
Chem Biol Drug Des. 2008 Jun;71(6):518-28. doi: 10.1111/j.1747-0285.2008.00670.x. Epub 2008 May 9.
The identification of small molecules that are selective for individual targets within target families is an important task in chemical biology. We aim at the development of computational approaches for the study of structure-selectivity relationships and prediction of target-selective ligands. In previous studies, we have introduced the concept of selectivity searching. Here we study compound selectivity on the basis of 18 selectivity sets that are designed to contain target-selective molecules and compounds that are comparably active against related targets. These sets consist of a total of 432 compounds and focus on eight targets belonging to four target families. This compound source has enabled us to evaluate different computational approaches to search for target-selective compounds in large databases. These investigations have revealed a preferred search strategy to enrich database selection sets with target-selective compounds. The selectivity sets reported here are made publicly available to support the development of other computational tools for applications in chemical biology and medicinal chemistry.
识别对靶标家族中各个靶标具有选择性的小分子是化学生物学中的一项重要任务。我们旨在开发用于研究结构-选择性关系和预测靶标选择性配体的计算方法。在先前的研究中,我们引入了选择性搜索的概念。在此,我们基于18个选择性集来研究化合物的选择性,这些选择性集旨在包含靶标选择性分子以及对相关靶标具有相当活性的化合物。这些集合总共包含432种化合物,聚焦于属于四个靶标家族的八个靶标。这种化合物来源使我们能够评估不同的计算方法,以在大型数据库中搜索靶标选择性化合物。这些研究揭示了一种首选的搜索策略,可用于用靶标选择性化合物丰富数据库选择集。此处报告的选择性集已公开提供,以支持开发用于化学生物学和药物化学应用的其他计算工具。