Suppr超能文献

使用机器学习分类模型预测人类碳酸酐酶抑制剂的活性和选择性概况。

Prediction of activity and selectivity profiles of human Carbonic Anhydrase inhibitors using machine learning classification models.

作者信息

Tinivella Annachiara, Pinzi Luca, Rastelli Giulio

机构信息

Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103, 41125, Modena, Italy.

Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy.

出版信息

J Cheminform. 2021 Mar 6;13(1):18. doi: 10.1186/s13321-021-00499-y.

Abstract

The development of selective inhibitors of the clinically relevant human Carbonic Anhydrase (hCA) isoforms IX and XII has become a major topic in drug research, due to their deregulation in several types of cancer. Indeed, the selective inhibition of these two isoforms, especially with respect to the homeostatic isoform II, holds great promise to develop anticancer drugs with limited side effects. Therefore, the development of in silico models able to predict the activity and selectivity against the desired isoform(s) is of central interest. In this work, we have developed a series of machine learning classification models, trained on high confidence data extracted from ChEMBL, able to predict the activity and selectivity profiles of ligands for human Carbonic Anhydrase isoforms II, IX and XII. The training datasets were built with a procedure that made use of flexible bioactivity thresholds to obtain well-balanced active and inactive classes. We used multiple algorithms and sampling sizes to finally select activity models able to classify active or inactive molecules with excellent performances. Remarkably, the results herein reported turned out to be better than those obtained by models built with the classic approach of selecting an a priori activity threshold. The sequential application of such validated models enables virtual screening to be performed in a fast and more reliable way to predict the activity and selectivity profiles against the investigated isoforms.

摘要

由于临床相关的人类碳酸酐酶(hCA)同工型IX和XII在几种癌症中失调,开发其选择性抑制剂已成为药物研究中的一个主要课题。实际上,对这两种同工型的选择性抑制,尤其是相对于稳态同工型II的抑制,对于开发副作用有限的抗癌药物具有很大的前景。因此,开发能够预测针对所需同工型的活性和选择性的计算机模拟模型至关重要。在这项工作中,我们开发了一系列机器学习分类模型,这些模型基于从ChEMBL中提取的高可信度数据进行训练,能够预测配体对人类碳酸酐酶同工型II、IX和XII的活性和选择性概况。训练数据集是通过一种利用灵活生物活性阈值的程序构建的,以获得平衡良好的活性和非活性类别。我们使用了多种算法和样本量,最终选择了能够以优异性能对活性或非活性分子进行分类的活性模型。值得注意的是,本文报道的结果比采用经典的先验活性阈值选择方法构建的模型所获得的结果更好。这些经过验证的模型的顺序应用能够以快速且更可靠的方式进行虚拟筛选,以预测针对所研究同工型的活性和选择性概况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/179a/7937250/0d40b86c43ae/13321_2021_499_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验