Suppr超能文献

基于小波的深度图像表示的联合估计与编码用于自由视点渲染。

Wavelet-based joint estimation and encoding of depth-image-based representations for free-viewpoint rendering.

作者信息

Maitre Matthieu, Shinagawa Yoshihisa, Do Minh N

机构信息

Windows Experience Group, Microsoft, Redmont, WA 98052, USA.

出版信息

IEEE Trans Image Process. 2008 Jun;17(6):946-57. doi: 10.1109/TIP.2008.922425.

Abstract

We propose a wavelet-based codec for the static depth-image-based representation, which allows viewers to freely choose the viewpoint. The proposed codec jointly estimates and encodes the unknown depth map from multiple views using a novel rate-distortion (RD) optimization scheme. The rate constraint reduces the ambiguity of depth estimation by favoring piecewise-smooth depth maps. The optimization is efficiently solved by a novel dynamic programming along trees of integer wavelet coefficients. The codec encodes the image and the depth map jointly to decrease their redundancy and to provide a RD-optimized bitrate allocation between the two. The codec also offers scalability both in resolution and in quality. Experiments on real data show the effectiveness of the proposed codec.

摘要

我们提出了一种基于小波的编解码器,用于基于静态深度图像的表示,该表示允许观看者自由选择视点。所提出的编解码器使用一种新颖的率失真(RD)优化方案,从多个视图联合估计并编码未知深度图。率约束通过支持分段平滑深度图来减少深度估计的模糊性。通过一种沿整数小波系数树的新颖动态规划有效地解决了优化问题。该编解码器对图像和深度图进行联合编码,以减少它们的冗余,并在两者之间提供RD优化的比特率分配。该编解码器还在分辨率和质量方面提供可扩展性。对真实数据的实验表明了所提出编解码器的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验