Suppr超能文献

乙酰化对于p53激活是必不可少的。

Acetylation is indispensable for p53 activation.

作者信息

Tang Yi, Zhao Wenhui, Chen Yue, Zhao Yingming, Gu Wei

机构信息

Institute for Cancer Genetics, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA.

出版信息

Cell. 2008 May 16;133(4):612-26. doi: 10.1016/j.cell.2008.03.025.

Abstract

The activation of the tumor suppressor p53 facilitates the cellular response to genotoxic stress; however, the p53 response can only be executed if its interaction with its inhibitor Mdm2 is abolished. There have been conflicting reports on the question of whether p53 posttranslational modifications, such as phosphorylation or acetylation, are essential or only play a subtle, fine-tuning role in the p53 response. Thus, it remains unclear whether p53 modification is absolutely required for its activation. We have now identified all major acetylation sites of p53. Although unacetylated p53 retains its ability to induce the p53-Mdm2 feedback loop, loss of acetylation completely abolishes p53-dependent growth arrest and apoptosis. Notably, acetylation of p53 abrogates Mdm2-mediated repression by blocking the recruitment of Mdm2 to p53-responsive promoters, which leads to p53 activation independent of its phosphorylation status. Our study identifies p53 acetylation as an indispensable event that destabilizes the p53-Mdm2 interaction and enables the p53-mediated stress response.

摘要

肿瘤抑制因子p53的激活有助于细胞对基因毒性应激作出反应;然而,只有当p53与其抑制剂Mdm2的相互作用被消除时,p53反应才能得以执行。关于p53的翻译后修饰(如磷酸化或乙酰化)在p53反应中是至关重要还是仅起微妙的微调作用,一直存在相互矛盾的报道。因此,目前尚不清楚p53的激活是否绝对需要其修饰。我们现已确定了p53的所有主要乙酰化位点。虽然未乙酰化的p53保留了诱导p53-Mdm2反馈环的能力,但乙酰化的缺失完全消除了p53依赖的生长停滞和凋亡。值得注意的是,p53的乙酰化通过阻止Mdm2募集到p53反应性启动子而消除了Mdm2介导的抑制作用,这导致p53的激活与其磷酸化状态无关。我们的研究确定p53乙酰化是一个不可或缺的事件,它破坏了p53-Mdm2的相互作用,并使p53介导的应激反应成为可能。

相似文献

1
Acetylation is indispensable for p53 activation.
Cell. 2008 May 16;133(4):612-26. doi: 10.1016/j.cell.2008.03.025.
2
Tip60-dependent acetylation of p53 modulates the decision between cell-cycle arrest and apoptosis.
Mol Cell. 2006 Dec 28;24(6):827-39. doi: 10.1016/j.molcel.2006.11.021.
3
Mdm2 is required for inhibition of Cdk2 activity by p21, thereby contributing to p53-dependent cell cycle arrest.
Mol Cell Biol. 2007 Jun;27(11):4166-78. doi: 10.1128/MCB.01967-06. Epub 2007 Mar 19.
4
SMAR1 forms a ternary complex with p53-MDM2 and negatively regulates p53-mediated transcription.
J Mol Biol. 2009 May 15;388(4):691-702. doi: 10.1016/j.jmb.2009.03.033. Epub 2009 Mar 19.
5
Nuclear interactor of ARF and Mdm2 regulates multiple pathways to activate p53.
Cell Cycle. 2014;13(8):1288-98. doi: 10.4161/cc.28202. Epub 2014 Feb 19.
7
MDM2 inhibits PCAF (p300/CREB-binding protein-associated factor)-mediated p53 acetylation.
J Biol Chem. 2002 Aug 23;277(34):30838-43. doi: 10.1074/jbc.M204078200. Epub 2002 Jun 14.
8
Degradation of MDM2 by the interaction between berberine and DAXX leads to potent apoptosis in MDM2-overexpressing cancer cells.
Cancer Res. 2010 Dec 1;70(23):9895-904. doi: 10.1158/0008-5472.CAN-10-1546. Epub 2010 Oct 8.
9
MDM2-HDAC1-mediated deacetylation of p53 is required for its degradation.
EMBO J. 2002 Nov 15;21(22):6236-45. doi: 10.1093/emboj/cdf616.
10
Inhibition of p53 degradation by Mdm2 acetylation.
FEBS Lett. 2004 Mar 12;561(1-3):195-201. doi: 10.1016/S0014-5793(04)00168-1.

引用本文的文献

3
Acetylation: a new target for protein degradation in cancer.
Trends Cancer. 2025 Apr;11(4):403-420. doi: 10.1016/j.trecan.2025.01.013. Epub 2025 Mar 6.
5
p53: The Multifaceted Roles of Covalent Modifications in Cancer.
Pharmaceuticals (Basel). 2024 Dec 13;17(12):1682. doi: 10.3390/ph17121682.
7
Smad1 Promotes Tumorigenicity and Chemoresistance of Glioblastoma by Sequestering p300 From p53.
Adv Sci (Weinh). 2025 Jan;12(4):e2402258. doi: 10.1002/advs.202402258. Epub 2024 Dec 4.
8
How does p53 work? Regulation by the intrinsically disordered domains.
Trends Biochem Sci. 2025 Jan;50(1):9-17. doi: 10.1016/j.tibs.2024.10.009. Epub 2024 Nov 21.
10
Temporal regulation of gene expression through integration of p53 dynamics and modifications.
Sci Adv. 2024 Oct 25;10(43):eadp2229. doi: 10.1126/sciadv.adp2229.

本文引用的文献

1
Negative regulation of the deacetylase SIRT1 by DBC1.
Nature. 2008 Jan 31;451(7178):587-90. doi: 10.1038/nature06515.
2
DBC1 is a negative regulator of SIRT1.
Nature. 2008 Jan 31;451(7178):583-6. doi: 10.1038/nature06500.
3
Chromatin immunoprecipitation for determining the association of proteins with specific genomic sequences in vivo.
Curr Protoc Cell Biol. 2004 Sep;Chapter 17:Unit 17.7. doi: 10.1002/0471143030.cb1707s23.
4
An acetylation switch in p53 mediates holo-TFIID recruitment.
Mol Cell. 2007 Nov 9;28(3):408-21. doi: 10.1016/j.molcel.2007.09.006.
5
hCAS/CSE1L associates with chromatin and regulates expression of select p53 target genes.
Cell. 2007 Aug 24;130(4):638-50. doi: 10.1016/j.cell.2007.08.001.
6
Hzf Determines cell survival upon genotoxic stress by modulating p53 transactivation.
Cell. 2007 Aug 24;130(4):624-37. doi: 10.1016/j.cell.2007.06.013.
7
The complex language of chromatin regulation during transcription.
Nature. 2007 May 24;447(7143):407-12. doi: 10.1038/nature05915.
8
p53 in health and disease.
Nat Rev Mol Cell Biol. 2007 Apr;8(4):275-83. doi: 10.1038/nrm2147.
9
ASPP: a new family of oncogenes and tumour suppressor genes.
Br J Cancer. 2007 Jan 29;96(2):196-200. doi: 10.1038/sj.bjc.6603525. Epub 2007 Jan 9.
10
Acetylation of the p53 DNA-binding domain regulates apoptosis induction.
Mol Cell. 2006 Dec 28;24(6):841-51. doi: 10.1016/j.molcel.2006.11.026.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验