Suppr超能文献

侧支路径在肺中³He长程扩散中的作用。

The role of collateral paths in long-range diffusion of 3He in lungs.

作者信息

Conradi Mark S, Yablonskiy Dmitriy A, Woods Jason C, Gierada David S, Bartel Seth-Emil T, Haywood Susan E, Menard Christopher

机构信息

Department of Physics, Washington University, Saint Louis, MO 63130, USA.

出版信息

Acad Radiol. 2008 Jun;15(6):675-82. doi: 10.1016/j.acra.2007.09.019.

Abstract

RATIONALE AND OBJECTIVES

The hyperpolarized (3)He long-range diffusion coefficient (LRDC) in lungs is sensitive to changes in lung structure due to emphysema, reflecting the increase in collateral paths resulting from tissue destruction. However, no clear understanding of LRDC in healthy lungs has emerged. Here we compare LRDC measured in healthy lungs with computer simulations of diffusion along the airway tree with no collateral connections.

MATERIALS AND METHODS

Computer simulations of diffusion of spatially modulated spin magnetization were performed in computer-generated, symmetric-branching models of lungs and compared with existing LRDC measurements in canine and human lungs.

RESULTS

The simulations predict LRDC values of order 0.001 cm(2)/sec, approximately 20 times smaller than the measured LRDC. We consider and rule out possible mechanisms for LRDC not included in the simulations: incomplete breath hold, cardiac motion, and passage of dissolved (3)He through airway walls. However, a very low density of small (micron) holes in the airways is shown to account for the observed LRDC.

CONCLUSION

It is proposed that LRDC in healthy lungs is determined by small collateral pathways.

摘要

原理与目的

肺内超极化(3)氦气的长程扩散系数(LRDC)对肺气肿导致的肺结构变化敏感,反映了组织破坏引起的侧支通路增加。然而,目前对健康肺脏中LRDC尚无清晰认识。在此,我们将健康肺脏中测量的LRDC与无侧支连接的气道树扩散计算机模拟结果进行比较。

材料与方法

在计算机生成的对称分支肺模型中进行空间调制自旋磁化扩散的计算机模拟,并与犬类和人类肺脏中现有的LRDC测量结果进行比较。

结果

模拟预测的LRDC值约为0.001 cm²/秒,比测量的LRDC小约20倍。我们考虑并排除了模拟中未包含的LRDC可能机制:屏气不完全、心脏运动以及溶解的(3)氦气通过气道壁。然而,气道中极低密度的微小(微米级)孔洞被证明可解释观察到的LRDC。

结论

有人提出健康肺脏中的LRDC由小的侧支通路决定。

相似文献

1
The role of collateral paths in long-range diffusion of 3He in lungs.
Acad Radiol. 2008 Jun;15(6):675-82. doi: 10.1016/j.acra.2007.09.019.
2
Role of collateral paths in long-range diffusion in lungs.
J Appl Physiol (1985). 2008 May;104(5):1495-503. doi: 10.1152/japplphysiol.01005.2007. Epub 2008 Feb 21.
3
Long-range diffusion of hyperpolarized 3He in explanted normal and emphysematous human lungs via magnetization tagging.
J Appl Physiol (1985). 2005 Nov;99(5):1992-7. doi: 10.1152/japplphysiol.00185.2005. Epub 2005 Jul 14.
4
MR tagging of human lungs using hyperpolarized 3He gas.
J Magn Reson Imaging. 2003 Jan;17(1):142-6. doi: 10.1002/jmri.10226.
5
19F MR imaging of ventilation and diffusion in excised lungs.
Magn Reson Med. 2005 Sep;54(3):577-85. doi: 10.1002/mrm.20632.
6
3He diffusion MRI of the lung.
Acad Radiol. 2005 Nov;12(11):1406-13. doi: 10.1016/j.acra.2005.07.006.
7
In vivo lung morphometry with hyperpolarized 3He diffusion MRI: theoretical background.
J Magn Reson. 2008 Feb;190(2):200-10. doi: 10.1016/j.jmr.2007.10.015. Epub 2007 Nov 1.
9
Early emphysematous changes in asymptomatic smokers: detection with 3He MR imaging.
Radiology. 2006 Jun;239(3):875-83. doi: 10.1148/radiol.2393050111.
10
Spatially resolved measurements of hyperpolarized gas properties in the lung in vivo. Part I: diffusion coefficient.
Magn Reson Med. 1999 Oct;42(4):721-8. doi: 10.1002/(sici)1522-2594(199910)42:4<721::aid-mrm14>3.0.co;2-d.

引用本文的文献

1
He diffusion MRI in human lungs.
J Magn Reson. 2018 Jul;292:90-98. doi: 10.1016/j.jmr.2018.04.007. Epub 2018 Apr 26.
2
Diffusion lung imaging with hyperpolarized gas MRI.
NMR Biomed. 2017 Mar;30(3). doi: 10.1002/nbm.3448. Epub 2015 Dec 16.
3
Pulmonary CT and MRI phenotypes that help explain chronic pulmonary obstruction disease pathophysiology and outcomes.
J Magn Reson Imaging. 2016 Mar;43(3):544-57. doi: 10.1002/jmri.25010. Epub 2015 Jul 22.
8
Role of collateral paths in long-range diffusion in lungs.
J Appl Physiol (1985). 2008 May;104(5):1495-503. doi: 10.1152/japplphysiol.01005.2007. Epub 2008 Feb 21.

本文引用的文献

1
Simulation of the apparent diffusion of helium-3 in the human acinus.
J Appl Physiol (1985). 2007 Jul;103(1):249-54. doi: 10.1152/japplphysiol.01384.2006. Epub 2007 Mar 22.
2
Hyperpolarized media MR imaging--expanding the boundaries?
Acad Radiol. 2006 Aug;13(8):929-31. doi: 10.1016/j.acra.2006.06.002.
4
q-Space analysis of lung morphometry in vivo with hyperpolarized 3He spectroscopy.
J Magn Reson Imaging. 2006 Jul;24(1):84-94. doi: 10.1002/jmri.20618.
5
Collateral ventilation.
Thorax. 2006 May;61(5):371-3. doi: 10.1136/thx.2006.060509.
6
Measurements of regional alveolar oxygen pressure using hyperpolarized 3He MRI.
Acad Radiol. 2005 Nov;12(11):1430-9. doi: 10.1016/j.acra.2005.07.007.
7
3He diffusion MRI of the lung.
Acad Radiol. 2005 Nov;12(11):1406-13. doi: 10.1016/j.acra.2005.07.006.
8
Long-range diffusion of hyperpolarized 3He in explanted normal and emphysematous human lungs via magnetization tagging.
J Appl Physiol (1985). 2005 Nov;99(5):1992-7. doi: 10.1152/japplphysiol.00185.2005. Epub 2005 Jul 14.
10
Determination of regional VA/Q by hyperpolarized 3He MRI.
Magn Reson Med. 2004 Jul;52(1):65-72. doi: 10.1002/mrm.20136.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验