Suppr超能文献

烟酰胺腺嘌呤二核苷酸(NADH)-醌氧化还原酶(复合体I)中,铁硫簇N4、N5和N6b之间是否存在“错配”?

Were there any "misassignments" among iron-sulfur clusters N4, N5 and N6b in NADH-quinone oxidoreductase (complex I)?

作者信息

Ohnishi Tomoko, Nakamaru-Ogiso Eiko

机构信息

Johnson Research Foundation, Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6059, USA.

出版信息

Biochim Biophys Acta. 2008 Jul-Aug;1777(7-8):703-10. doi: 10.1016/j.bbabio.2008.04.032. Epub 2008 Apr 30.

Abstract

NADH-quinone oxidoreductase (complex I) in bovine heart mitochondria has a molecular weight of approximately 1 million Da composed of 45 distinct subunits. It is the largest energy transducing complex so far known. Bacterial complex I is simpler and smaller, but the essential redox components and the basic mechanisms of electron and proton translocation are the same. Over the past three decades, Ohnishi et al. have pursued extensive EPR studies near liquid helium temperatures and characterized most of the iron-sulfur clusters in complex I. Recently, Yakovlev et al. [G. Yakovlev, T. Reda, J. Hirst, Reevaluating the relationship between EPR spectra and enzyme structure for the iron-sulfur clusters in NADH:quinone oxidoreductase, Proc. Natl. Acad. Sci. U. S. A. 104 (2007) 12720-12725] challenged Ohnishi's group by claiming that there were EPR "misassignments" among clusters N4, N5 and N6b (in order to prevent confusion, we used current consensus nomenclature, as the nickname). They claimed that we misassigned EPR signals arising from cluster N5 to cluster N4, and signals from cluster N6b to cluster N4. They also proposed that cluster N5 has (4Cys)-ligands. Based on the accumulated historical data and recent results of our site-specific mutagenesis experiments, we confirmed that cluster N5 has (1His+3Cys)-ligands as we had predicted. We revealed that E. coli cluster N5 signals could be clearly detected at the sample temperature around 3 K with microwave power higher than 5 mW. Thus Hirst's group could not detect N5 signals under any of their EPR conditions, reported in their PNAS paper. It seems that they misassigned the signals from cluster N4 to N5. As to the claim of "misassignment" between clusters N4 and N6b, that was not a possibility because our mutagenesis systems did not contain cluster N6b. Therefore, we believe that we have not made any "misassignment" in our work.

摘要

牛心线粒体中的NADH-醌氧化还原酶(复合体I)分子量约为100万道尔顿,由45个不同的亚基组成。它是目前已知最大的能量转换复合体。细菌复合体I更简单、更小,但基本的氧化还原成分以及电子和质子转运的基本机制是相同的。在过去三十年里,大西等人在液氦温度附近进行了广泛的电子顺磁共振(EPR)研究,并对复合体I中的大多数铁硫簇进行了表征。最近,雅科夫列夫等人[G. 雅科夫列夫、T. 雷达、J. 赫斯特,重新评估NADH:醌氧化还原酶中铁硫簇的EPR光谱与酶结构之间的关系,《美国国家科学院院刊》104 (2007) 12720 - 12725]对大西的团队提出质疑,声称在簇N4、N5和N6b(为避免混淆,我们使用当前的共识命名法,即昵称)之间存在EPR“错误归属”。他们声称我们将源自簇N5的EPR信号错误归属于簇N4,以及将簇N6b的信号错误归属于簇N4。他们还提出簇N5具有(4个半胱氨酸)配体。基于积累的历史数据和我们位点特异性诱变实验的最新结果,我们证实了簇N5如我们所预测的那样具有(1个组氨酸 + 3个半胱氨酸)配体。我们发现,在样品温度约为3 K且微波功率高于5 mW时,可以清晰检测到大肠杆菌簇N5的信号。因此,赫斯特团队在其发表于《美国国家科学院院刊》的论文中所报道的任何EPR条件下都未能检测到N5信号。似乎他们将来自簇N4的信号错误归属于N5。至于簇N4和N6b之间“错误归属”的说法,这是不可能的,因为我们的诱变系统中不包含簇N6b。因此,我们认为我们在工作中没有进行任何“错误归属”。

相似文献

1
Were there any "misassignments" among iron-sulfur clusters N4, N5 and N6b in NADH-quinone oxidoreductase (complex I)?
Biochim Biophys Acta. 2008 Jul-Aug;1777(7-8):703-10. doi: 10.1016/j.bbabio.2008.04.032. Epub 2008 Apr 30.
4
Reevaluating the relationship between EPR spectra and enzyme structure for the iron sulfur clusters in NADH:quinone oxidoreductase.
Proc Natl Acad Sci U S A. 2007 Jul 31;104(31):12720-5. doi: 10.1073/pnas.0705593104. Epub 2007 Jul 19.
10
Electron transfer in subunit NuoI (TYKY) of Escherichia coli NADH:quinone oxidoreductase (NDH-1).
J Biol Chem. 2012 May 18;287(21):17363-17373. doi: 10.1074/jbc.M111.329649. Epub 2012 Apr 2.

引用本文的文献

2
HO selectively damages the binuclear iron-sulfur cluster N1b of respiratory complex I.
Sci Rep. 2023 May 11;13(1):7652. doi: 10.1038/s41598-023-34821-5.
3
A site-differentiated [4Fe-4S] cluster controls electron transfer reactivity of [FeFe]-hydrogenase I.
Chem Sci. 2022 Mar 25;13(16):4581-4588. doi: 10.1039/d1sc07120c. eCollection 2022 Apr 20.
6
Mitochondrial complex I in the post-ischemic heart: reperfusion-mediated oxidative injury and protein cysteine sulfonation.
J Mol Cell Cardiol. 2018 Aug;121:190-204. doi: 10.1016/j.yjmcc.2018.07.244. Epub 2018 Jul 20.
9
Electron tunneling rates in respiratory complex I are tuned for efficient energy conversion.
Angew Chem Int Ed Engl. 2015 Feb 23;54(9):2844-8. doi: 10.1002/anie.201410967. Epub 2015 Jan 19.
10
On the mechanism of respiratory complex I.
J Bioenerg Biomembr. 2014 Aug;46(4):255-68. doi: 10.1007/s10863-014-9566-8. Epub 2014 Jul 15.

本文引用的文献

3
Reevaluating the relationship between EPR spectra and enzyme structure for the iron sulfur clusters in NADH:quinone oxidoreductase.
Proc Natl Acad Sci U S A. 2007 Jul 31;104(31):12720-5. doi: 10.1073/pnas.0705593104. Epub 2007 Jul 19.
5
Respiratory complex I: mechanistic and structural insights provided by the crystal structure of the hydrophilic domain.
Biochemistry. 2007 Mar 6;46(9):2275-88. doi: 10.1021/bi602508x. Epub 2007 Feb 3.
7
Identification of a novel subunit of respiratory complex I from Thermus thermophilus.
Biochemistry. 2006 Apr 11;45(14):4413-20. doi: 10.1021/bi0600998.
8
Structure of the hydrophilic domain of respiratory complex I from Thermus thermophilus.
Science. 2006 Mar 10;311(5766):1430-6. doi: 10.1126/science.1123809. Epub 2006 Feb 9.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验