Suppr超能文献

用于理解复杂性及其演化的层次坐标系及其在基因调控网络中的应用。

Hierarchical coordinate systems for understanding complexity and its evolution, with applications to genetic regulatory networks.

作者信息

Egri-Nagy Attila, Nehaniv Chrystopher L

机构信息

School of Computer Science, University of Hertfordshire, Hatfield, Hertfordshire, United Kingdom.

出版信息

Artif Life. 2008 Summer;14(3):299-312. doi: 10.1162/artl.2008.14.3.14305.

Abstract

Beyond complexity measures, sometimes it is worthwhile in addition to investigate how complexity changes structurally, especially in artificial systems where we have complete knowledge about the evolutionary process. Hierarchical decomposition is a useful way of assessing structural complexity changes of organisms modeled as automata, and we show how recently developed computational tools can be used for this purpose, by computing holonomy decompositions and holonomy complexity. To gain insight into the evolution of complexity, we investigate the smoothness of the landscape structure of complexity under minimal transitions. As a proof of concept, we illustrate how the hierarchical complexity analysis reveals symmetries and irreversible structure in biological networks by applying the methods to the lac operon mechanism in the genetic regulatory network of Escherichia coli.

摘要

除了复杂性度量之外,有时还值得进一步研究复杂性在结构上是如何变化的,特别是在我们对进化过程有完整了解的人工系统中。层次分解是评估作为自动机建模的生物体结构复杂性变化的一种有用方法,我们展示了如何通过计算完整度分解和完整度复杂性,将最近开发的计算工具用于此目的。为了深入了解复杂性的演变,我们研究了在最小转变下复杂性景观结构的平滑性。作为概念验证,我们通过将这些方法应用于大肠杆菌遗传调控网络中的乳糖操纵子机制,来说明层次复杂性分析如何揭示生物网络中的对称性和不可逆结构。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验