Deleeuw Lynn, Tchernatynskaia Anna V, Lane Andrew N
J. G. Brown Cancer Center, University of Louisville, Louisville, Kentucky 40202, USA.
Biochemistry. 2008 Jun 17;47(24):6378-85. doi: 10.1021/bi702339q. Epub 2008 May 21.
The DNA binding domain of the yeast transcription factor Mbp1 is a winged helix-turn-helix structure, with an extended DNA binding site involving C-terminal "tail" residues. The thermodynamics of the interaction of the DNA binding domain with its target DNA sequence have been determined using fluorescence anisotropy and calorimetry. The dissociation constant was determined as a function of pH and ionic strength in assessing the relative importance of specific and nonspecific ionic interactions. Mutational analysis of the residues in the binding site was used to determine their contributions to binding. The three tail histidine residues and His 63 in the recognition helix accounted for most of the pH dependence of the DNA binding. The tail histidine residues, along with two previously identified lysine residues, account for a major part of the polyelectrolyte contribution to binding and for the nonspecific affinity of Mbp1 for DNA. Gln67 was shown to be a very important residue, which interacts in the minor groove of the target DNA. Systematic mutations of the DNA consensus binding sites showed that the CGCG core contributes most to recognition. Isothermal titration calorimetry revealed a strong temperature-dependent enthalpy change, with a Delta Cp of -1.3kJ mol(-1) K(-1), consistent with a specific binding mode and burial of surface area. Parsing the free energy contributions demonstrates that polyelectrolyte effects account for half of the total free energy at the physiological pH and salt concentration. We present a model for the origin of the sequence specificity and overall affinity of the protein that accounts for the observed thermodynamics.
酵母转录因子Mbp1的DNA结合结构域是一种带翼的螺旋-转角-螺旋结构,其扩展的DNA结合位点涉及C端“尾巴”残基。已使用荧光各向异性和量热法测定了DNA结合结构域与其靶DNA序列相互作用的热力学。在评估特异性和非特异性离子相互作用的相对重要性时,测定了解离常数作为pH和离子强度的函数。对结合位点中的残基进行突变分析以确定它们对结合的贡献。识别螺旋中的三个尾巴组氨酸残基和His 63占DNA结合pH依赖性的大部分。尾巴组氨酸残基与两个先前鉴定的赖氨酸残基一起,占聚电解质对结合贡献的主要部分以及Mbp1对DNA的非特异性亲和力的主要部分。Gln67被证明是一个非常重要的残基,它在靶DNA的小沟中相互作用。对DNA共有结合位点的系统突变表明,CGCG核心对识别贡献最大。等温滴定量热法揭示了强烈的温度依赖性焓变,ΔCp为-1.3kJ mol(-1) K(-1),这与特定的结合模式和表面积的埋藏一致。解析自由能贡献表明,在生理pH和盐浓度下,聚电解质效应占总自由能的一半。我们提出了一个关于蛋白质序列特异性和整体亲和力起源的模型,该模型解释了观察到的热力学现象。