Petisco Cristina, Downey Gerard, Murray Ian, Zabalgogeazcoa Iñigo, García-Criado Balbino, García-Ciudad Antonia
Instituto de Recursos Naturales y Agrobiología, CSIC, Salamanca, Spain.
FEMS Microbiol Lett. 2008 Jul;284(2):135-41. doi: 10.1111/j.1574-6968.2008.01186.x. Epub 2008 May 19.
The aim of this work was to investigate the potential of visible and near-infrared (Vis-NIR) reflectance spectroscopy for the classification of three morphologically similar species of fungal endophytes of grasses. Vis-NIR spectra (400-2498 nm) from 34 isolates of Epichloë sylvatica, 32 of Epichloë typhina and 38 of Epichloë festucae were recorded directly from fresh mycelium growing in potato dextrose agar plates. Multivariate procedures applied to the spectral data were discriminant modified partial least squares regression, soft independent modelling of class analogy and discriminant partial least squares regressions (PLS1, PLS2). Several types of data pretreatments were tested to develop the classification models. The best predictive models were achieved with PLS2 analysis; with this method, 90% of E. typhina and 100% of E. festucae and E. sylvatica external validation samples were successfully classified. These results show the potential of Vis-NIR spectroscopy combined with multivariate analysis as a rapid method for classifying morphologically similar species of filamentous fungi.
这项工作的目的是研究可见和近红外(Vis-NIR)反射光谱法对三种形态相似的禾本科真菌内生菌进行分类的潜力。直接从生长在马铃薯葡萄糖琼脂平板上的新鲜菌丝体记录了34株林地顶孢霉、32株黄顶孢霉和38株羊茅顶孢霉的Vis-NIR光谱(400 - 2498纳米)。应用于光谱数据的多变量程序有判别式修正偏最小二乘回归、类类比软独立建模和判别式偏最小二乘回归(PLS1、PLS2)。测试了几种类型的数据预处理以建立分类模型。通过PLS2分析获得了最佳预测模型;使用该方法,90%的黄顶孢霉以及100%的羊茅顶孢霉和林地顶孢霉外部验证样本被成功分类。这些结果表明,Vis-NIR光谱法结合多变量分析作为一种快速分类形态相似丝状真菌物种的方法具有潜力。