Alexandrakis Dimitris, Downey Gerard, Scannell Amalia G M
Teagasc, Ashtown Food Research Centre, Ashtown, Dublin 15, Ireland.
J Agric Food Chem. 2008 May 28;56(10):3431-7. doi: 10.1021/jf073407x. Epub 2008 Apr 24.
Near-infrared (NIR) transflectance spectra of Listeria innocua FH, Lactococcus lactis, Pseudomonas fluorescens, Pseudomonas mendocina, and Pseudomonas putida suspensions were collected and investigated for their potential use in the identification and classification of bacteria. Unmodified spectral data were transformed (first and second derivative) using the Savitzsky-Golay algorithm. Principal component analysis (PCA), partial least-squares discriminant analysis (PLS2-DA), and soft independent modeling of class analogy (SIMCA) were used in the analysis. Using either full cross-validation or separate calibration and prediction data sets, PLS2 regression classified the five bacterial suspensions with 100% accuracy at species level. At Pseudomonas genus level, PLS2 regression classified the three Pseudomonas species with 100% accuracy. In the case of SIMCA, prediction of an unknown sample set produced correct classification rates of 100% except for L. innocua FH (77%). At genus level, SIMCA produced correct classification rates of 96.7, 100, and 100% for P. fluorescens, P. mendocina, and P. putida, respectively. This successful investigation suggests that NIR spectroscopy can become a useful, rapid, and noninvasive tool for bacterial identification.
收集了无害李斯特菌FH、乳酸乳球菌、荧光假单胞菌、门多萨假单胞菌和恶臭假单胞菌悬浮液的近红外(NIR)漫反射光谱,并研究了其在细菌鉴定和分类中的潜在用途。使用Savitzky-Golay算法对未修改的光谱数据进行变换(一阶和二阶导数)。分析中使用了主成分分析(PCA)、偏最小二乘判别分析(PLS2-DA)和类类比软独立建模(SIMCA)。使用完全交叉验证或单独的校准和预测数据集,PLS2回归在物种水平上对五种细菌悬浮液的分类准确率为100%。在假单胞菌属水平上,PLS2回归对三种假单胞菌的分类准确率为100%。在SIMCA的情况下,除了无害李斯特菌FH(77%)外,未知样本集的预测产生了100%的正确分类率。在属水平上,SIMCA对荧光假单胞菌、门多萨假单胞菌和恶臭假单胞菌的正确分类率分别为96.7%、100%和100%。这项成功的研究表明,近红外光谱可以成为一种有用、快速且非侵入性的细菌鉴定工具。