Suppr超能文献

生化网络的离散时间随机建模与仿真

Discrete-time stochastic modeling and simulation of biochemical networks.

作者信息

Sandmann Werner

机构信息

University of Bamberg, Feldkirchenstr. 21, D-96045, Bamberg, Germany.

出版信息

Comput Biol Chem. 2008 Aug;32(4):292-7. doi: 10.1016/j.compbiolchem.2008.03.018. Epub 2008 Apr 10.

Abstract

Since inherent randomness in chemically reacting systems is evident, stochastic modeling and simulation are exceedingly important for investigating complex biological networks. Within the most common stochastic approach a network is modeled by a continuous-time Markov chain governed by the chemical master equation. We show how the continuous-time Markov chain can be converted to a stochastically identical discrete-time Markov chain and obtain a discrete-time version of the chemical master equation. Simulating the discrete-time Markov chain is equivalent to the Gillespie algorithm but requires less effort in that it eliminates the generation of exponential random variables. Thus, exactness as possessed by the Gillespie algorithm is preserved while the simulation can be performed more efficiently.

摘要

由于化学反应系统中固有的随机性是显而易见的,因此随机建模和模拟对于研究复杂的生物网络极为重要。在最常见的随机方法中,网络由化学主方程控制的连续时间马尔可夫链建模。我们展示了如何将连续时间马尔可夫链转换为随机等价的离散时间马尔可夫链,并获得化学主方程的离散时间版本。模拟离散时间马尔可夫链等同于 Gillespie 算法,但所需的工作量较少,因为它消除了指数随机变量的生成。因此,在保持 Gillespie 算法所具有的精确性的同时,可以更高效地进行模拟。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验