Suppr超能文献

生化网络随机模拟器(BioNetS):用于生化网络随机建模的软件。

Biochemical Network Stochastic Simulator (BioNetS): software for stochastic modeling of biochemical networks.

作者信息

Adalsteinsson David, McMillen David, Elston Timothy C

机构信息

Department of Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3250, USA.

出版信息

BMC Bioinformatics. 2004 Mar 8;5:24. doi: 10.1186/1471-2105-5-24.

Abstract

BACKGROUND

Intrinsic fluctuations due to the stochastic nature of biochemical reactions can have large effects on the response of biochemical networks. This is particularly true for pathways that involve transcriptional regulation, where generally there are two copies of each gene and the number of messenger RNA (mRNA) molecules can be small. Therefore, there is a need for computational tools for developing and investigating stochastic models of biochemical networks.

RESULTS

We have developed the software package Biochemical Network Stochastic Simulator (BioNetS) for efficiently and accurately simulating stochastic models of biochemical networks. BioNetS has a graphical user interface that allows models to be entered in a straightforward manner, and allows the user to specify the type of random variable (discrete or continuous) for each chemical species in the network. The discrete variables are simulated using an efficient implementation of the Gillespie algorithm. For the continuous random variables, BioNetS constructs and numerically solves the appropriate chemical Langevin equations. The software package has been developed to scale efficiently with network size, thereby allowing large systems to be studied. BioNetS runs as a BioSpice agent and can be downloaded from http://www.biospice.org. BioNetS also can be run as a stand alone package. All the required files are accessible from http://x.amath.unc.edu/BioNetS.

CONCLUSIONS

We have developed BioNetS to be a reliable tool for studying the stochastic dynamics of large biochemical networks. Important features of BioNetS are its ability to handle hybrid models that consist of both continuous and discrete random variables and its ability to model cell growth and division. We have verified the accuracy and efficiency of the numerical methods by considering several test systems.

摘要

背景

由于生化反应的随机性导致的内在波动,可能会对生化网络的响应产生重大影响。对于涉及转录调控的途径而言尤其如此,在这些途径中,通常每个基因有两个拷贝,并且信使核糖核酸(mRNA)分子的数量可能很少。因此,需要用于开发和研究生化网络随机模型的计算工具。

结果

我们开发了生化网络随机模拟器(BioNetS)软件包,用于高效、准确地模拟生化网络的随机模型。BioNetS具有图形用户界面,允许以直接的方式输入模型,并允许用户为网络中的每个化学物种指定随机变量的类型(离散或连续)。使用 Gillespie 算法的高效实现来模拟离散变量。对于连续随机变量,BioNetS构建并数值求解适当的化学朗之万方程。该软件包已开发为可随网络大小高效扩展,从而允许研究大型系统。BioNetS作为BioSpice代理运行,可从http://www.biospice.org下载。BioNetS也可以作为独立软件包运行。所有所需文件可从http://x.amath.unc.edu/BioNetS获取。

结论

我们已将BioNetS开发成为研究大型生化网络随机动力学的可靠工具。BioNetS的重要特性包括其处理由连续和离散随机变量组成的混合模型的能力以及对细胞生长和分裂进行建模的能力。我们通过考虑几个测试系统验证了数值方法的准确性和效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc98/408466/919f419bab91/1471-2105-5-24-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验