Suppr超能文献

Location of amino acid residues important for the structure and biological function of the haemagglutinin-neuraminidase glycoprotein of Sendai virus by analysis of escape mutants.

作者信息

Lyn D, Mazanec M B, Nedrud J G, Portner A

机构信息

Department of Virology and Molecular Biology, St Jude Children's Research Hospital, Memphis, Tennessee 38101.

出版信息

J Gen Virol. 1991 Apr;72 ( Pt 4):817-24. doi: 10.1099/0022-1317-72-4-817.

Abstract

To locate sites important for the structure and function of the haemagglutinin-neuraminidase glycoprotein (HN) of Sendai virus, the biological characteristics of antibody-selected escape mutants were correlated with mutations in the primary HN amino acid sequence. An escape mutant virus deficient only in neuraminidase function but with an HN content equal to that of the wild-type virus had an amino acid change at residue 184, implying that this position may be important for maintaining a functionally active enzymic site. In contrast, other escape mutant viruses with reductions in haemagglutination (eightfold) and neuraminidase activities (70 to 80%) had a sharply diminished HN content and substitutions either at residue 375, or double mutations at residues 279 and 461. The loss of biological activity with the concomitant loss of HN content suggests that these sites may be important for the processing and transport of HN, or in maintaining a structure resistant to proteolytic degradation; residue 451 was shown to have an undefined role in fusion activity. The monoclonal antibodies (MAbs) used to isolate the mutant viruses included those of the IgA and IgG classes and were divided into four operational groups based on their haemagglutination-inhibition pattern against the selected mutants. MAbs of the IgA class recognized epitopes overlapping with (group A) as well as epitopes distinct from (groups C and D) those recognized by the IgG class; group B included only IgG antibodies. The epitopes recognized by IgA antibodies may identify residues important for the secretory immune response to the HN molecule.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验