Suppr超能文献

人类、鸟类、蜥蜴和青蛙的耳声发射:多种产生机制的证据。

Otoacoustic emissions in humans, birds, lizards, and frogs: evidence for multiple generation mechanisms.

作者信息

Bergevin Christopher, Freeman Dennis M, Saunders James C, Shera Christopher A

机构信息

Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA, USA.

出版信息

J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2008 Jul;194(7):665-83. doi: 10.1007/s00359-008-0338-y. Epub 2008 May 24.

Abstract

Many non-mammalian ears lack physiological features considered integral to the generation of otoacoustic emissions in mammals, including basilar-membrane traveling waves and hair-cell somatic motility. To help elucidate the mechanisms of emission generation, this study systematically measured and compared evoked emissions in all four classes of tetrapod vertebrates using identical stimulus paradigms. Overall emission levels are largest in the lizard and frog species studied and smallest in the chicken. Emission levels in humans, the only examined species with somatic hair cell motility, were intermediate. Both geckos and frogs exhibit substantially higher levels of high-order intermodulation distortion. Stimulus frequency emission phase-gradient delays are longest in humans but are at least 1 ms in all species. Comparisons between stimulus-frequency emission and distortion-product emission phase gradients for low stimulus levels indicate that representatives from all classes except frog show evidence for two distinct generation mechanisms analogous to the reflection- and distortion-source (i.e., place- and wave-fixed) mechanisms evident in mammals. Despite morphological differences, the results suggest the role of a scaling-symmetric traveling wave in chicken emission generation, similar to that in mammals, and perhaps some analog in the gecko.

摘要

许多非哺乳动物的耳朵缺乏一些被认为是哺乳动物产生耳声发射所必需的生理特征,包括基底膜行波和毛细胞体细胞运动。为了帮助阐明发射产生的机制,本研究使用相同的刺激范式系统地测量并比较了四类四足脊椎动物诱发的耳声发射。在所研究的蜥蜴和蛙类物种中,总体发射水平最高,而在鸡中最小。人类是唯一被检测到具有体细胞毛细胞运动的物种,其发射水平处于中间。壁虎和蛙类都表现出明显更高水平的高阶互调失真。刺激频率发射相位梯度延迟在人类中最长,但在所有物种中至少为1毫秒。对于低刺激水平,刺激频率发射和畸变产物发射相位梯度之间的比较表明,除蛙类外的所有类别的代表都显示出存在两种不同的产生机制的证据,这两种机制类似于在哺乳动物中明显的反射源和畸变源(即位置固定和波固定)机制。尽管形态存在差异,但结果表明,类似于哺乳动物,缩放对称行波在鸡的耳声发射产生中发挥作用,在壁虎中可能也存在一些类似物。

相似文献

1
Otoacoustic emissions in humans, birds, lizards, and frogs: evidence for multiple generation mechanisms.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2008 Jul;194(7):665-83. doi: 10.1007/s00359-008-0338-y. Epub 2008 May 24.
4
Distortion product otoacoustic emissions provide clues hearing mechanisms in the frog ear.
J Acoust Soc Am. 2004 Dec;116(6):3713-26. doi: 10.1121/1.1811571.
5
Level dependence of distortion product otoacoustic emissions in the leopard frog, Rana pipiens pipiens.
Hear Res. 2004 Jun;192(1-2):107-18. doi: 10.1016/j.heares.2004.01.015.
7
Salient features of otoacoustic emissions are common across tetrapod groups and suggest shared properties of generation mechanisms.
Proc Natl Acad Sci U S A. 2015 Mar 17;112(11):3362-7. doi: 10.1073/pnas.1418569112. Epub 2015 Mar 3.
8
Stimulus frequency otoacoustic emissions in the Northern leopard frog, Rana pipiens pipiens: implications for inner ear mechanics.
Hear Res. 2006 Oct;220(1-2):67-75. doi: 10.1016/j.heares.2006.07.009. Epub 2006 Aug 30.
9
Suppression of distortion product otoacoustic emissions in the anuran ear.
J Acoust Soc Am. 2007 Jan;121(1):344-51. doi: 10.1121/1.2382458.

引用本文的文献

2
Sources of Microstructure in Mammalian Cochlear Responses.
J Assoc Res Otolaryngol. 2025 Feb;26(1):1-15. doi: 10.1007/s10162-025-00974-5. Epub 2025 Jan 29.
3
DPOAEs and tympanal membrane vibrations reveal adaptations of the sexually dimorphic ear of the concave-eared torrent frog, Odorrana tormota.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2023 Jan;209(1):79-88. doi: 10.1007/s00359-022-01569-8. Epub 2022 Sep 15.
4
Otoacoustic Emissions Evoked by the Time-Varying Harmonic Structure of Speech.
eNeuro. 2021 Apr 13;8(2). doi: 10.1523/ENEURO.0428-20.2021. Print 2021 Mar-Apr.
5
An In Vitro Study on Prestin Analog Gene in the Bullfrog Hearing Organs.
Neural Plast. 2020 Jul 2;2020:3570732. doi: 10.1155/2020/3570732. eCollection 2020.
6
Beyond the limits: identifying the high-frequency detectors in the anuran ear.
Biol Lett. 2020 Jul;16(7):20200343. doi: 10.1098/rsbl.2020.0343. Epub 2020 Jul 1.
7
Bilateral Spontaneous Otoacoustic Emissions Show Coupling between Active Oscillators in the Two Ears.
Biophys J. 2019 May 21;116(10):2023-2034. doi: 10.1016/j.bpj.2019.02.032. Epub 2019 Apr 2.
9
Cochlear Delay and Medial Olivocochlear Functioning in Children with Suspected Auditory Processing Disorder.
PLoS One. 2015 Aug 28;10(8):e0136906. doi: 10.1371/journal.pone.0136906. eCollection 2015.
10
Unexpected dynamic up-tuning of auditory organs in day-flying moths.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2015 Jul;201(7):657-66. doi: 10.1007/s00359-015-1009-4. Epub 2015 Apr 19.

本文引用的文献

1
Longitudinally propagating traveling waves of the mammalian tectorial membrane.
Proc Natl Acad Sci U S A. 2007 Oct 16;104(42):16510-5. doi: 10.1073/pnas.0703665104. Epub 2007 Oct 9.
3
Suppression of distortion product otoacoustic emissions in the anuran ear.
J Acoust Soc Am. 2007 Jan;121(1):344-51. doi: 10.1121/1.2382458.
4
Panoramic measurements of the apex of the cochlea.
J Neurosci. 2006 Nov 1;26(44):11462-73. doi: 10.1523/JNEUROSCI.1882-06.2006.
5
Stimulus frequency otoacoustic emissions in the Northern leopard frog, Rana pipiens pipiens: implications for inner ear mechanics.
Hear Res. 2006 Oct;220(1-2):67-75. doi: 10.1016/j.heares.2006.07.009. Epub 2006 Aug 30.
7
Temperature dependence of anuran distortion product otoacoustic emissions.
J Assoc Res Otolaryngol. 2006 Sep;7(3):246-52. doi: 10.1007/s10162-006-0039-6. Epub 2006 May 25.
8
Depolarization of cochlear outer hair cells evokes active hair bundle motion by two mechanisms.
J Neurosci. 2006 Mar 8;26(10):2757-66. doi: 10.1523/JNEUROSCI.3808-05.2006.
9
Loss and recovery of sound-evoked otoacoustic emissions in young chicks following acoustic trauma.
Audiol Neurootol. 2005 Jul-Aug;10(4):209-19. doi: 10.1159/000084842. Epub 2005 Mar 20.
10
Detailed f1, f2 area study of distortion product otoacoustic emissions in the frog.
J Assoc Res Otolaryngol. 2005 Mar;6(1):37-47. doi: 10.1007/s10162-004-5019-0. Epub 2005 Apr 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验