Suppr超能文献

哺乳动物耳蜗反应中微观结构的来源。

Sources of Microstructure in Mammalian Cochlear Responses.

作者信息

Dewey James B

机构信息

Caruso Department of Otolaryngology-Head & Neck Surgery, University of Southern California, Los Angeles, CA, USA.

出版信息

J Assoc Res Otolaryngol. 2025 Feb;26(1):1-15. doi: 10.1007/s10162-025-00974-5. Epub 2025 Jan 29.

Abstract

Quasiperiodic fluctuations with frequency are observed in a variety of responses that either originate from or strongly depend on the cochlea's active mechanics. These spectral microstructures are unique and stable features of individual ears and have been most thoroughly studied in behavioral hearing thresholds and otoacoustic emissions (OAEs). While the exact morphology of the microstructure patterns may differ across measurement types, the patterns are interrelated and are thought to depend on common mechanisms. This review summarizes the characteristics and proposed origins of the microstructures observed in behavioral and OAE responses, as well as other mechanical and electrophysiological responses of the mammalian cochlea. Throughout, the work of Glenis Long and colleagues is highlighted. Long contributed greatly to our understanding of microstructure and its perceptual consequences, as well as to the development of techniques for reducing the impact of microstructure on OAE-based assays of cochlear function.

摘要

在各种源于或强烈依赖于耳蜗主动力学的反应中,观察到了具有特定频率的准周期波动。这些频谱微结构是个体耳朵独特且稳定的特征,并且在行为听力阈值和耳声发射(OAE)方面得到了最为深入的研究。虽然微结构模式的确切形态可能因测量类型而异,但这些模式相互关联,并且被认为依赖于共同的机制。本综述总结了在行为和OAE反应中观察到的微结构的特征及其推测的起源,以及哺乳动物耳蜗的其他力学和电生理反应。在整个过程中,重点介绍了格莱尼斯·朗及其同事的工作。朗对我们理解微结构及其感知后果,以及对减少微结构对基于OAE的耳蜗功能检测影响的技术发展做出了巨大贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d11/11861815/5b22ef802eb3/10162_2025_974_Fig1_HTML.jpg

相似文献

1
Sources of Microstructure in Mammalian Cochlear Responses.
J Assoc Res Otolaryngol. 2025 Feb;26(1):1-15. doi: 10.1007/s10162-025-00974-5. Epub 2025 Jan 29.
2
Antidepressants for pain management in adults with chronic pain: a network meta-analysis.
Health Technol Assess. 2024 Oct;28(62):1-155. doi: 10.3310/MKRT2948.
4
Grommets (ventilation tubes) for hearing loss associated with otitis media with effusion in children.
Cochrane Database Syst Rev. 2005 Jan 25(1):CD001801. doi: 10.1002/14651858.CD001801.pub2.
5
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.
Cochrane Database Syst Rev. 2022 May 20;5(5):CD013665. doi: 10.1002/14651858.CD013665.pub3.
7
Behavioral interventions to reduce risk for sexual transmission of HIV among men who have sex with men.
Cochrane Database Syst Rev. 2008 Jul 16(3):CD001230. doi: 10.1002/14651858.CD001230.pub2.
8
Uncommon Non-MS Demyelinating Disorders of the Central Nervous System.
Curr Neurol Neurosci Rep. 2025 Jul 1;25(1):45. doi: 10.1007/s11910-025-01432-8.
9
Psychological interventions for adults who have sexually offended or are at risk of offending.
Cochrane Database Syst Rev. 2012 Dec 12;12(12):CD007507. doi: 10.1002/14651858.CD007507.pub2.
10
Running shoes for preventing lower limb running injuries in adults.
Cochrane Database Syst Rev. 2022 Aug 22;8(8):CD013368. doi: 10.1002/14651858.CD013368.pub2.

本文引用的文献

2
Something in Our Ears Is Oscillating, but What? A Modeller's View of Efforts to Model Spontaneous Emissions.
J Assoc Res Otolaryngol. 2024 Aug;25(4):313-328. doi: 10.1007/s10162-024-00940-7. Epub 2024 May 6.
3
Swept Along: Measuring Otoacoustic Emissions Using Continuously Varying Stimuli.
J Assoc Res Otolaryngol. 2024 Apr;25(2):91-102. doi: 10.1007/s10162-024-00934-5. Epub 2024 Feb 26.
4
Bandpass Shape of Distortion-Product Otoacoustic Emission Ratio Functions Reflects Cochlear Frequency Tuning in Normal-Hearing Mice.
J Assoc Res Otolaryngol. 2023 Jun;24(3):305-324. doi: 10.1007/s10162-023-00892-4. Epub 2023 Apr 18.
5
Characterizing the Relationship Between Reflection and Distortion Otoacoustic Emissions in Normal-Hearing Adults.
J Assoc Res Otolaryngol. 2022 Oct;23(5):647-664. doi: 10.1007/s10162-022-00857-z. Epub 2022 Jul 8.
6
Otoacoustic Emissions in Non-Mammals.
Audiol Res. 2022 May 11;12(3):260-272. doi: 10.3390/audiolres12030027.
7
Whistling While it Works: Spontaneous Otoacoustic Emissions and the Cochlear Amplifier.
J Assoc Res Otolaryngol. 2022 Feb;23(1):17-25. doi: 10.1007/s10162-021-00829-9. Epub 2022 Jan 3.
8
Reflection-Source Emissions Evoked with Clicks and Frequency Sweeps: Comparisons Across Levels.
J Assoc Res Otolaryngol. 2021 Dec;22(6):641-658. doi: 10.1007/s10162-021-00813-3. Epub 2021 Oct 4.
9
Comparing spontaneous and stimulus frequency otoacoustic emissions in mice with tectorial membrane defects.
Hear Res. 2021 Feb;400:108143. doi: 10.1016/j.heares.2020.108143. Epub 2020 Dec 5.
10
Spectral Ripples in Round-Window Cochlear Microphonics: Evidence for Multiple Generation Mechanisms.
J Assoc Res Otolaryngol. 2018 Aug;19(4):401-419. doi: 10.1007/s10162-018-0668-6. Epub 2018 Jul 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验