Suppr超能文献

体外KaiC磷酸化的稳健昼夜节律振荡机制。

Mechanism of robust circadian oscillation of KaiC phosphorylation in vitro.

作者信息

Eguchi Kohei, Yoda Mitsumasa, Terada Tomoki P, Sasai Masaki

机构信息

Department of Computational Science and Engineering, Nagoya University, Nagoya 464-8603, Japan.

出版信息

Biophys J. 2008 Aug;95(4):1773-84. doi: 10.1529/biophysj.107.127555. Epub 2008 May 23.

Abstract

By incubating the mixture of three cyanobacterial proteins, KaiA, KaiB, and KaiC, with ATP in vitro, T. Kondo and his colleagues in recent work reconstituted the robust circadian rhythm of the phosphorylation level of KaiC. This finding indicates that protein-protein interactions and the associated hydrolysis of ATP suffice to generate the circadian rhythm. Several theoretical models have been proposed to explain the rhythm generated in this "protein-only" system, but the clear criterion to discern different possible mechanisms was not known. In this article, we discuss a model based on two basic assumptions: the assumption of the allosteric transition of a KaiC hexamer and the assumption of the monomer exchange between KaiC hexamers. The model shows a stable rhythmic oscillation of the phosphorylation level of KaiC, which is robust against changes in concentration of Kai proteins. We show that this robustness gives a clue to distinguish different possible mechanisms. We also discuss the robustness of oscillation against the change in the system size. Behaviors of the system with the cellular or subcellular size should shed light on the role of the protein-protein interactions in in vivo circadian oscillation.

摘要

通过在体外将三种蓝藻蛋白(KaiA、KaiB和KaiC)的混合物与ATP一起孵育,近藤滋及其同事在最近的研究中重建了KaiC磷酸化水平的稳健昼夜节律。这一发现表明,蛋白质-蛋白质相互作用以及相关的ATP水解足以产生昼夜节律。已经提出了几种理论模型来解释在这个“仅蛋白质”系统中产生的节律,但辨别不同可能机制的明确标准尚不清楚。在本文中,我们讨论了一个基于两个基本假设的模型:KaiC六聚体的变构转变假设和KaiC六聚体之间单体交换的假设。该模型显示了KaiC磷酸化水平的稳定节律振荡,对Kai蛋白浓度的变化具有稳健性。我们表明,这种稳健性为区分不同的可能机制提供了线索。我们还讨论了振荡对系统大小变化的稳健性。具有细胞或亚细胞大小的系统行为应有助于揭示蛋白质-蛋白质相互作用在体内昼夜振荡中的作用。

相似文献

1
6
Circadian rhythmicity by autocatalysis.通过自催化实现昼夜节律。
PLoS Comput Biol. 2006 Jul 28;2(7):e96. doi: 10.1371/journal.pcbi.0020096. Epub 2006 Jun 8.
8
KaiA-stimulated KaiC phosphorylation in circadian timing loops in cyanobacteria.蓝细菌生物钟节律回路中 KaiA 刺激的 KaiC 磷酸化作用
Proc Natl Acad Sci U S A. 2002 Nov 26;99(24):15788-93. doi: 10.1073/pnas.222467299. Epub 2002 Oct 21.
10
An allosteric model of circadian KaiC phosphorylation.昼夜节律KaiC磷酸化的变构模型。
Proc Natl Acad Sci U S A. 2007 May 1;104(18):7420-5. doi: 10.1073/pnas.0608665104. Epub 2007 Apr 25.

引用本文的文献

5
Single-molecular and ensemble-level oscillations of cyanobacterial circadian clock.蓝藻生物钟的单分子和整体水平振荡
Biophys Physicobiol. 2018 May 26;15:136-150. doi: 10.2142/biophysico.15.0_136. eCollection 2018.
7
A thermodynamically consistent model of the post-translational Kai circadian clock.翻译后修饰的Kai生物钟的热力学一致模型。
PLoS Comput Biol. 2017 Mar 15;13(3):e1005415. doi: 10.1371/journal.pcbi.1005415. eCollection 2017 Mar.
8
Systems Biology-Derived Discoveries of Intrinsic Clocks.基于系统生物学的内在生物钟发现
Front Neurol. 2017 Feb 6;8:25. doi: 10.3389/fneur.2017.00025. eCollection 2017.
9
Toward Multiscale Models of Cyanobacterial Growth: A Modular Approach.迈向蓝藻生长的多尺度模型:一种模块化方法。
Front Bioeng Biotechnol. 2016 Dec 26;4:95. doi: 10.3389/fbioe.2016.00095. eCollection 2016.

本文引用的文献

1
Autonomous synchronization of the circadian KaiC phosphorylation rhythm.生物钟蛋白KaiC磷酸化节律的自主同步
Nat Struct Mol Biol. 2007 Nov;14(11):1084-8. doi: 10.1038/nsmb1312. Epub 2007 Oct 28.
6
An allosteric model of circadian KaiC phosphorylation.昼夜节律KaiC磷酸化的变构模型。
Proc Natl Acad Sci U S A. 2007 May 1;104(18):7420-5. doi: 10.1073/pnas.0608665104. Epub 2007 Apr 25.
9
Functioning and robustness of a bacterial circadian clock.细菌生物钟的功能与稳健性。
Mol Syst Biol. 2007;3:90. doi: 10.1038/msb4100128. Epub 2007 Mar 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验