Suppr超能文献

稳健的GRAPPA重建及其基于感知差异模型的评估。

Robust GRAPPA reconstruction and its evaluation with the perceptual difference model.

作者信息

Huo Donglai, Wilson David L

机构信息

Keller Center for Imaging Innovation, Barrow Neurological Institute, Phoenix, Arizona, USA.

出版信息

J Magn Reson Imaging. 2008 Jun;27(6):1412-20. doi: 10.1002/jmri.21352.

Abstract

PURPOSE

To develop and optimize a new modification of GRAPPA (generalized autocalibrating partially parallel acquisitions) MR reconstruction algorithm named "Robust GRAPPA."

MATERIALS AND METHODS

In Robust GRAPPA, k-space data points were weighted before the reconstruction. Small or zero weights were assigned to "outliers" in k-space. We implemented a Slow Robust GRAPPA method, which iteratively reweighted the k-space data. It was compared to an ad hoc Fast Robust GRAPPA method, which eliminated (assigned zero weights to) a fixed percentage of k-space "outliers" following an initial estimation procedure. In comprehensive experiments the new algorithms were evaluated using the perceptual difference model (PDM), whereby image quality was quantitatively compared to the reference image. Independent variables included algorithm type, total reduction factor, outlier ratio, center filling options, and noise across multiple image datasets, providing 10,800 test images for evaluation.

RESULTS

The Fast Robust GRAPPA method gave results very similar to Slow Robust GRAPPA, and showed significant improvements as compared to regular GRAPPA. Fast Robust GRAPPA added little computation time compared with regular GRAPPA.

CONCLUSION

Robust GRAPPA was proposed and proved useful for improving the reconstructed image quality. PDM was helpful in designing and optimizing the MR reconstruction algorithms.

摘要

目的

开发并优化一种名为“稳健GRAPPA”的GRAPPA(广义自校准部分并行采集)磁共振成像重建算法的新改进方法。

材料与方法

在稳健GRAPPA中,k空间数据点在重建前进行加权。给k空间中的“离群值”赋予小权重或零权重。我们实现了一种慢速稳健GRAPPA方法,该方法对k空间数据进行迭代重新加权。将其与一种临时的快速稳健GRAPPA方法进行比较,后者在初始估计过程之后消除(赋予零权重)固定百分比的k空间“离群值”。在综合实验中,使用感知差异模型(PDM)对新算法进行评估,通过该模型将图像质量与参考图像进行定量比较。自变量包括算法类型、总缩减因子、离群值比例、中心填充选项以及多个图像数据集的噪声,共提供10800张测试图像用于评估。

结果

快速稳健GRAPPA方法得到的结果与慢速稳健GRAPPA非常相似,并且与常规GRAPPA相比有显著改进。与常规GRAPPA相比,快速稳健GRAPPA增加的计算时间很少。

结论

提出了稳健GRAPPA并证明其对提高重建图像质量有用。PDM有助于设计和优化磁共振成像重建算法。

相似文献

引用本文的文献

2
KerNL: Kernel-Based Nonlinear Approach to Parallel MRI Reconstruction.KerNL:基于核的并行 MRI 重建的非线性方法。
IEEE Trans Med Imaging. 2019 Jan;38(1):312-321. doi: 10.1109/TMI.2018.2864197. Epub 2018 Aug 7.
4
Improving GRAPPA reconstruction by frequency discrimination in the ACS lines.通过对采集信号(ACS)线中的频率进行鉴别来改进GRAPPA重建。
Int J Comput Assist Radiol Surg. 2015 Oct;10(10):1699-710. doi: 10.1007/s11548-015-1172-7. Epub 2015 Mar 26.
9
Parallel reconstruction using null operations.并行重建使用空操作。
Magn Reson Med. 2011 Nov;66(5):1241-53. doi: 10.1002/mrm.22899. Epub 2011 May 20.

本文引用的文献

1
Optimization of spiral MRI using a perceptual difference model.使用感知差异模型优化螺旋磁共振成像
Int J Biomed Imaging. 2006;2006:35290. doi: 10.1155/IJBI/2006/35290. Epub 2006 Oct 9.
5
Auto-calibrated parallel spiral imaging.自动校准并行螺旋成像
Magn Reson Med. 2006 Mar;55(3):619-25. doi: 10.1002/mrm.20811.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验