IEEE Trans Med Imaging. 2019 Jan;38(1):312-321. doi: 10.1109/TMI.2018.2864197. Epub 2018 Aug 7.
The conventional calibration-based parallel imaging method assumes a linear relationship between the acquired multi-channel k-space data and the unacquired missing data, where the linear coefficients are estimated using some auto-calibration data. In this paper, we first analyze the model errors in the conventional calibration-based methods and demonstrate the nonlinear relationship. Then, a much more general nonlinear framework is proposed for auto-calibrated parallel imaging. In this framework, kernel tricks are employed to represent the general nonlinear relationship between acquired and unacquired k-space data without increasing the computational complexity. Identification of the nonlinear relationship is still performed by solving linear equations. Experimental results demonstrate that the proposed method can achieve reconstruction quality superior to GRAPPA and NL-GRAPPA at high net reduction factors.
传统的基于标定的并行成像方法假设采集的多通道 k 空间数据与未采集的缺失数据之间存在线性关系,其中线性系数是使用一些自动标定数据估计的。在本文中,我们首先分析了传统基于标定的方法中的模型误差,并证明了这种非线性关系。然后,我们为自动标定的并行成像提出了一个更为通用的非线性框架。在这个框架中,核技巧被用来表示采集和未采集的 k 空间数据之间的一般非线性关系,而不会增加计算复杂度。非线性关系的识别仍然通过求解线性方程来完成。实验结果表明,该方法在高净减因子下可以达到优于 GRAPPA 和 NL-GRAPPA 的重建质量。