Suppr超能文献

随机生成的活性类别特征子结构在多种活性化合物和数据库化合物中的分布。

Distribution of randomly generated activity class characteristic substructures in diverse active and database compounds.

作者信息

Batista José, Bajorath Jürgen

机构信息

Department of Life Science Informatics, B-IT, LIMES Institute, Rheinische Friedrich-Wilhelms-Universität Bonn, Dahlmannstr. 2, 53113, Bonn, Germany.

出版信息

Mol Divers. 2008 Feb;12(1):77-83. doi: 10.1007/s11030-008-9078-8. Epub 2008 May 28.

Abstract

Substructures are among the most preferred molecular descriptors in chemoinformatics and medicinal chemistry. Conventional substructure-type descriptors are typically the result of well-defined design strategies. Previously, we have introduced Activity Class Characteristic Substructures (ACCS) derived from randomly generated molecular fragment populations and described their utility in similarity searching. Short ACCS fingerprints were found to perform surprisingly well on many compound classes when compared to more complex state-of-the-art 2D fingerprints. In order to elucidate potential reasons for the high predictive utility of ACCS, we have carried out a thorough analysis of their distribution in nine activity classes and nearly four million database compounds. We show that the discriminatory power of ACCS results from the rare occurrence of ACCS combinations in screening databases.

摘要

子结构是化学信息学和药物化学中最受欢迎的分子描述符之一。传统的子结构类型描述符通常是明确设计策略的结果。此前,我们引入了从随机生成的分子片段群体中衍生出的活性类别特征子结构(ACCS),并描述了它们在相似性搜索中的效用。与更复杂的先进二维指纹相比,短ACCS指纹在许多化合物类别上表现出惊人的良好性能。为了阐明ACCS具有高预测效用的潜在原因,我们对其在九个活性类别和近四百万个数据库化合物中的分布进行了全面分析。我们表明,ACCS的鉴别能力源于筛选数据库中ACCS组合的罕见出现。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验