Giszter Simon, Davies Michelle R, Ramakrishnan Arun, Udoekwere Ubong Ime, Kargo William J
Department of Neurobiology and Anatomy, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA.
J Neurophysiol. 2008 Aug;100(2):839-51. doi: 10.1152/jn.00866.2007. Epub 2008 May 28.
Unlike adult spinalized rats, approximately 20% of rats spinalized as postnatal day 1 or 2 (P1/P2) neonates achieve autonomous hindlimb weight support. Cortical representations of mid/low trunk occur only in such rats with high weight support. However, the importance of hindlimb/trunk motor cortex in function of spinalized rats remains unclear. We tested the importance of trunk sensorimotor cortex in their locomotion using lesions guided by cortical microstimulation in P1/P2 weight-supporting neonatal spinalized rats and controls. In four intact control rats, lesions of hindlimb/trunk cortex caused no treadmill deficits. All spinalized rats lesioned in trunk cortex (n = 16: 4 transplant, 6 transect, 6 transect + fibrin glue) lost an average of about 40% of their weight support. Intact trunk cortex was essential to their level of function. Lesion of trunk cortex substantially increased roll of the hindquarters, which correlated to diminished weight support, but other kinematic stepping parameters showed little change. Embryonic day 14 (E14) transplants support development of the trunk motor representations in their normal location. We tested the role of novel relay circuits arising from the grafts in such cortical representations in E14 transplants using the rats that received (noncellular) fibrin glue grafting at P1/P2 (8 allografts and 32 xenografts). Fibrin-repaired rats with autonomous weight support also had trunk cortical representations similar to those of E14 transplant rats. Thus acellular repair and intrinsic plasticity were sufficient to support the observed features. Our data show that effective cortical mechanisms for trunk control are essential for autonomous weight support in P1/P2 spinalized rats and these can be achieved by intrinsic plasticity.
与成年脊髓损伤大鼠不同,约20%在出生后第1天或第2天(P1/P2)脊髓损伤的新生大鼠能够实现自主后肢负重支撑。中/下躯干的皮质表征仅出现在此类具有高负重支撑能力的大鼠中。然而,后肢/躯干运动皮质在脊髓损伤大鼠功能中的重要性仍不清楚。我们通过在P1/P2负重支撑的新生脊髓损伤大鼠和对照组中利用皮质微刺激引导的损伤来测试躯干感觉运动皮质在其运动中的重要性。在4只完整的对照大鼠中,后肢/躯干皮质损伤未导致跑步机运动缺陷。所有在躯干皮质损伤的脊髓损伤大鼠(n = 16:4只移植、6只横断、6只横断 + 纤维蛋白胶)平均失去了约40%的负重支撑能力。完整的躯干皮质对其功能水平至关重要。躯干皮质损伤显著增加了后躯的摆动,这与负重支撑能力下降相关,但其他运动学步行动作参数变化不大。胚胎第14天(E14)移植可支持躯干运动表征在其正常位置的发育。我们利用在P1/P2接受(无细胞)纤维蛋白胶移植的大鼠(8只同种异体移植和32只异种异体移植)测试了E14移植中源自移植物的新型中继回路在此类皮质表征中的作用。具有自主负重支撑能力的纤维蛋白修复大鼠也具有与E14移植大鼠相似的躯干皮质表征。因此,无细胞修复和内在可塑性足以支持观察到的特征。我们的数据表明,有效的皮质控制机制对于P1/P2脊髓损伤大鼠的自主负重支撑至关重要,并且这些可以通过内在可塑性来实现。