Suppr超能文献

大鼠红细胞中3-O-甲基-D-葡萄糖的转运:重水的影响。

3-O-methyl-D-glucose transport in rat red cells: effects of heavy water.

作者信息

Naftalin R J, Rist R J

机构信息

Physiology Group, King's College London, U.K.

出版信息

Biochim Biophys Acta. 1991 Apr 26;1064(1):37-48. doi: 10.1016/0005-2736(91)90409-2.

Abstract

Transport of 3-O-methyl-D-glucose (3-OMG) in rat red blood cells (RBCs) has been examined at 24 degrees C. The Km and Vm of zero-trans net uptake are 2.3 +/- 0.48 mM and 0.055 +/- 0.003 mumol (ml cell water)-1) min-1, whereas the Km and Vm for net exit are 2.1 +/- 0.12 mM and 0.12 +/- 0.01 mumol (ml cell water)-1 min-1. The Km and Vm for infinite-trans exchange uptake are 2.24 +/- 0.14 mM and 0.20 +/- 0.04 mumol (ml cell water)-1 min-1. In agreement with Whitesell et al. (Abumrad, N.A., Briscoe, P., Beth, A.H. and Whitesell, R.R. (1988) Biochim. Biophys. Acta 938, 222-230), we find that there is no significant acceleration of the rate of exchange exit over net exit. Substitution of D2O for water results in an increase in the Vm for zero-trans net uptake to 0.091 +/- 0.004 mumol (ml cell water)-1 min-1. There is no change in the Vm or Km for exchange uptake or net or exchange exit. Counterflow experiments indicate, in agreement with Helgerson and Carruthers (1989) Biochemistry 28, 4580-4594), that there is some compartmentalization of 3-OMG within the cells, perhaps resulting from slow complexation of the sugar with some intracellular component. The data can be simulated by assuming that transport across the membrane is mediated by either a fixed 2-site, or an alternating 1-site symmetrical transporter. With both models the observed asymmetries in net and exchange kinetics and in counterflow can be ascribed entirely to the complexation reaction of the sugar to an intracellular component. Also the D2O effects can entirely be attributed to an increase in the rate of sugar movement between bound and free compartments.

摘要

已在24℃下检测了大鼠红细胞(RBC)中3 - O - 甲基 - D - 葡萄糖(3 - OMG)的转运情况。零转运净摄取的Km和Vm分别为2.3±0.48 mM和0.055±0.003 μmol(ml细胞水)-1·min-1,而净流出的Km和Vm分别为2.1±0.12 mM和0.12±0.01 μmol(ml细胞水)-1·min-1。无限转运交换摄取的Km和Vm分别为2.24±0.14 mM和0.20±0.04 μmol(ml细胞水)-1·min-1。与怀特塞尔等人(阿布姆拉德,N.A.,布里斯科,P.,贝丝,A.H.和怀特塞尔,R.R.(1988年)《生物化学与生物物理学报》938,222 - 230)的研究结果一致,我们发现交换流出速率相较于净流出速率没有显著加快。用重水(D2O)替代水会使零转运净摄取的Vm增加至0.091±0.004 μmol(ml细胞水)-1·min-1。交换摄取、净流出或交换流出的Vm或Km均无变化。逆流实验表明,与赫尔格森和卡拉瑟斯(1989年)《生物化学》28,4580 - 4594的研究结果一致,细胞内存在3 - OMG的某种区室化现象,这可能是由于糖与某些细胞内成分的缓慢络合所致。通过假设跨膜转运由固定的双位点或交替的单位点对称转运体介导,可对数据进行模拟。对于这两种模型,观察到的净动力学和交换动力学以及逆流中的不对称性完全可归因于糖与细胞内成分的络合反应。此外,重水的影响完全可归因于糖在结合区室和自由区室之间移动速率的增加。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验