Suppr超能文献

一种用于模拟大型生化反应网络的恒时动力学蒙特卡罗算法。

A constant-time kinetic Monte Carlo algorithm for simulation of large biochemical reaction networks.

作者信息

Slepoy Alexander, Thompson Aidan P, Plimpton Steven J

机构信息

National Nuclear Security Administration, U.S. Department of Energy, Washington D.C. 20585, USA.

出版信息

J Chem Phys. 2008 May 28;128(20):205101. doi: 10.1063/1.2919546.

Abstract

The time evolution of species concentrations in biochemical reaction networks is often modeled using the stochastic simulation algorithm (SSA) [Gillespie, J. Phys. Chem. 81, 2340 (1977)]. The computational cost of the original SSA scaled linearly with the number of reactions in the network. Gibson and Bruck developed a logarithmic scaling version of the SSA which uses a priority queue or binary tree for more efficient reaction selection [Gibson and Bruck, J. Phys. Chem. A 104, 1876 (2000)]. More generally, this problem is one of dynamic discrete random variate generation which finds many uses in kinetic Monte Carlo and discrete event simulation. We present here a constant-time algorithm, whose cost is independent of the number of reactions, enabled by a slightly more complex underlying data structure. While applicable to kinetic Monte Carlo simulations in general, we describe the algorithm in the context of biochemical simulations and demonstrate its competitive performance on small- and medium-size networks, as well as its superior constant-time performance on very large networks, which are becoming necessary to represent the increasing complexity of biochemical data for pathways that mediate cell function.

摘要

生化反应网络中物种浓度随时间的演变通常使用随机模拟算法(SSA)进行建模[吉莱斯皮,《物理化学杂志》81,2340(1977)]。原始SSA的计算成本与网络中的反应数量成线性比例。吉布森和布鲁克开发了一种SSA的对数缩放版本,它使用优先级队列或二叉树来更有效地选择反应[吉布森和布鲁克,《物理化学杂志A》104,18,76(2000)]。更一般地说,这个问题是动态离散随机变量生成问题之一,在动力学蒙特卡罗和离散事件模拟中有许多应用。我们在此提出一种常数时间算法,其成本与反应数量无关,并通过一种稍微复杂的底层数据结构实现。虽然该算法一般适用于动力学蒙特卡罗模拟,但我们在生化模拟的背景下描述该算法,并展示其在中小型网络上的竞争性能,以及在非常大的网络上的卓越常数时间性能,对于介导细胞功能的途径而言,为了表示日益复杂的生化数据,这种大型网络正变得不可或缺。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验