Suppr超能文献

混合随机模拟算法中的消极问题分析及解决办法及其应用。

Analysis and remedy of negativity problem in hybrid stochastic simulation algorithm and its application.

机构信息

Department of Computer Science, Virginia Tech, Blacksburg, 24061, VA, USA.

出版信息

BMC Bioinformatics. 2019 Jun 20;20(Suppl 12):315. doi: 10.1186/s12859-019-2836-z.

Abstract

BACKGROUND

The hybrid stochastic simulation algorithm, proposed by Haseltine and Rawlings (HR), is a combination of differential equations for traditional deterministic models and Gillespie's algorithm (SSA) for stochastic models. The HR hybrid method can significantly improve the efficiency of stochastic simulations for multiscale biochemical networks. Previous studies on the accuracy analysis for a linear chain reaction system showed that the HR hybrid method is accurate if the scale difference between fast and slow reactions is above a certain threshold, regardless of population scales. However, the population of some reactant species might be driven negative if they are involved in both deterministic and stochastic systems.

RESULTS

This work investigates the negativity problem of the HR hybrid method, analyzes and tests it with several models including a linear chain system, a nonlinear reaction system, and a realistic biological cell cycle system. As a benchmark, the second slow reaction firing time is used to measure the effect of negative populations on the accuracy of the HR hybrid method. Our analysis demonstrates that usually the error caused by negative populations is negligible compared with approximation errors of the HR hybrid method itself, and sometimes negativity phenomena may even improve the accuracy. But for systems where negative species are involved in nonlinear reactions or some species are highly sensitive to negative species, the system stability will be influenced and may lead to system failure when using the HR hybrid method. In those circumstances, three remedies are studied for the negativity problem.

CONCLUSION

The results of different models and examples suggest that the Zero-Reaction rule is a good remedy for nonlinear and sensitive systems considering its efficiency and simplicity.

摘要

背景

混合随机模拟算法(Hybrid Stochastic Simulation Algorithm,HR)由 Haseltine 和 Rawlings 提出,它将传统确定性模型的微分方程与 Gillespie 算法(Stochastic Simulation Algorithm,SSA)相结合,用于随机模型。HR 混合方法可以显著提高多尺度生化网络的随机模拟效率。先前关于线性链式反应系统准确性分析的研究表明,只要快、慢反应之间的尺度差异大于某个阈值,HR 混合方法是准确的,而与种群规模无关。然而,如果某些反应物同时参与确定性和随机系统,则其种群可能会变为负值。

结果

本研究调查了 HR 混合方法的负值问题,使用包括线性链系统、非线性反应系统和真实生物细胞周期系统在内的几个模型进行了分析和测试。作为基准,我们使用第二个慢反应点火时间来衡量负种群对 HR 混合方法准确性的影响。我们的分析表明,通常负种群引起的误差与 HR 混合方法本身的近似误差相比可以忽略不计,并且有时负值现象甚至可以提高准确性。但是,对于涉及负物种的非线性反应系统或某些物种对负物种敏感的系统,使用 HR 混合方法会影响系统稳定性,并可能导致系统故障。在这些情况下,我们研究了三种解决负值问题的方法。

结论

不同模型和示例的结果表明,考虑到其效率和简单性,零反应规则(Zero-Reaction rule)是处理非线性和敏感系统的一种很好的补救方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a78f/6584509/d1df14229883/12859_2019_2836_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验