Gauthier Michel G, Slater Gary W
Department of Physics, University of Ottawa, 150 Louis-Pasteur, Ottawa, Ontario K1N 6N5, Canada.
J Chem Phys. 2008 May 28;128(20):205103. doi: 10.1063/1.2927878.
In the first paper of this series, we developed a new one-dimensional Monte Carlo approach for the study of flexible chains that are translocating through a small channel. We also presented a numerical scheme that can be used to obtain exact values for both the escape times and the escape probabilities given an initial pore-polymer configuration. We now present and discuss the fundamental scaling behaviors predicted by this Monte Carlo method. Our most important result is the fact that, in the presence of an external bias E, we observe a change in the scaling law for the translocation time tau as function of the polymer length N: In the general expression tau approximately N(beta)E, the exponent changes from beta=1 for moderately long chains to beta=1+nu or beta=2nu for very large values of N (for Rouse and Zimm dynamics, respectively). We also observe an increase in the effective diffusion coefficient due to the presence of entropic pulling on unbiased polymer chains.
在本系列的第一篇论文中,我们开发了一种新的一维蒙特卡罗方法,用于研究通过小通道转运的柔性链。我们还提出了一种数值方案,给定初始的孔 - 聚合物构型,该方案可用于获得逃逸时间和逃逸概率的精确值。现在我们展示并讨论这种蒙特卡罗方法预测的基本标度行为。我们最重要的结果是,在存在外部偏置E的情况下,我们观察到转运时间τ作为聚合物长度N的函数的标度律发生了变化:在一般表达式τ≈N(β)E中,指数从中等长度链的β = 1变为N值非常大时的β = 1 + ν或β = 2ν(分别对应于Rouse动力学和Zimm动力学)。我们还观察到,由于对无偏聚合物链存在熵拉力,有效扩散系数增加。