Buchholz Sven, Sommer Gerald
Cognitive Systems Group, University of Kiel, Christian-Albrechts-Platz 4, 24118 Kiel, Germany.
Neural Netw. 2008 Sep;21(7):925-35. doi: 10.1016/j.neunet.2008.03.004. Epub 2008 Jun 2.
We study the framework of Clifford algebra for the design of neural architectures capable of processing different geometric entities. The benefits of this model-based computation over standard real-valued networks are demonstrated. One particular example thereof is the new class of so-called Spinor Clifford neurons. The paper provides a sound theoretical basis to Clifford neural computation. For that purpose the new concepts of isomorphic neurons and isomorphic representations are introduced. A unified training rule for Clifford MLPs is also provided. The topic of activation functions for Clifford MLPs is discussed in detail for all two-dimensional Clifford algebras for the first time.
我们研究了克利福德代数框架,用于设计能够处理不同几何实体的神经架构。展示了这种基于模型的计算相对于标准实值网络的优势。其中一个特别的例子是所谓的旋量克利福德神经元的新类别。本文为克利福德神经计算提供了坚实的理论基础。为此,引入了同构神经元和同构表示的新概念。还提供了克利福德多层感知器的统一训练规则。首次详细讨论了所有二维克利福德代数的克利福德多层感知器的激活函数主题。