Samukhin A N, Dorogovtsev S N, Mendes J F F
Departamento de Física, Universidade de Aveiro, Aveiro, Portugal.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Mar;77(3 Pt 2):036115. doi: 10.1103/PhysRevE.77.036115. Epub 2008 Mar 14.
We study the Laplacian operator of an uncorrelated random network and, as an application, consider hopping processes (diffusion, random walks, signal propagation, etc.) on networks. We develop a strict approach to these problems. We derive an exact closed set of integral equations, which provide the averages of the Laplacian operator's resolvent. This enables us to describe the propagation of a signal and random walks on the network. We show that the determining parameter in this problem is the minimum degree q(m) of vertices in the network and that the high-degree part of the degree distribution is not that essential. The position of the lower edge of the Laplacian spectrum lambda(c) appears to be the same as in the regular Bethe lattice with the coordination number q(m). Namely, lambda(c)>0 if q(m)>2 , and lambda(c)=0 if q(m)< or =2 . In both of these cases the density of eigenvalues rho(lambda)-->0 as lambda-->lambda(c)+0 , but the limiting behaviors near lambda(c) are very different. In terms of a distance from a starting vertex, the hopping propagator is a steady moving Gaussian, broadening with time. This picture qualitatively coincides with that for a regular Bethe lattice. Our analytical results include the spectral density rho(lambda) near lambda(c) and the long-time asymptotics of the autocorrelator and the propagator.
我们研究了非相关随机网络的拉普拉斯算子,并将其应用于网络上的跳跃过程(扩散、随机游走、信号传播等)。我们针对这些问题开发了一种严格的方法。我们推导了一组精确的积分方程闭集,这些方程给出了拉普拉斯算子预解式的平均值。这使我们能够描述网络上信号的传播和随机游走。我们表明,该问题中的决定性参数是网络中顶点的最小度q(m),并且度分布的高阶部分并非至关重要。拉普拉斯谱的下边缘位置λ(c)与具有配位数q(m)的规则贝塞晶格中的情况相同。即,如果q(m)>2,则λ(c)>0;如果q(m)≤2,则λ(c)=0。在这两种情况下,当λ→λ(c)+0时,特征值密度ρ(λ)→0,但在λ(c)附近的极限行为非常不同。就从起始顶点的距离而言,跳跃传播子是一个稳定移动的高斯函数,随时间展宽。这一图像在定性上与规则贝塞晶格的情况一致。我们的分析结果包括λ(c)附近的谱密度ρ(λ)以及自相关器和传播子的长时间渐近行为。