Suppr超能文献

测试社会互动中的互惠性:方向一致性与斜对称统计量之间的比较。

Testing reciprocity in social interactions: a comparison between the directional consistency and skew-symmetry statistics.

作者信息

Leiva David, Solanas Antonio, Salafranca Lluís

机构信息

University of Barcelona, Barcelona, Spain.

出版信息

Behav Res Methods. 2008 May;40(2):626-34. doi: 10.3758/brm.40.2.626.

Abstract

In the present article, we focus on two indices that quantify directionality and skew-symmetrical patterns in social interactions as measures of social reciprocity: the directional consistency (DC) and skew-symmetry indices. Although both indices enable researchers to describe social groups, most studies require statistical inferential tests. The main aims of the present study are first, to propose an overall statistical technique for testing null hypotheses regarding social reciprocity in behavioral studies, using the DC and skew-symmetry statistics (Phi) at group level; and second, to compare both statistics in order to allow researchers to choose the optimal measure depending on the conditions. In order to allow researchers to make statistical decisions, statistical significance for both statistics has been estimated by means of a Monte Carlo simulation. Furthermore, this study will enable researchers to choose the optimal observational conditions for carrying out their research, since the power of the statistical tests has been estimated.

摘要

在本文中,我们聚焦于两个量化社会互动中的方向性和偏对称模式以作为社会互惠性度量的指标:方向一致性(DC)和偏对称指标。尽管这两个指标都能让研究人员描述社会群体,但大多数研究需要进行统计推断测试。本研究的主要目的首先是提出一种总体统计技术,用于在行为研究中使用群体层面的DC和偏对称统计量(Phi)来检验关于社会互惠性的零假设;其次是比较这两个统计量,以便研究人员根据具体情况选择最优度量。为了让研究人员能够做出统计决策,已通过蒙特卡罗模拟估计了这两个统计量的统计显著性。此外,由于已估计了统计检验的功效,本研究将使研究人员能够选择开展其研究的最优观察条件。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验