Suppr超能文献

乳腺肿瘤转移:通过蛋白质组分析进行研究

Breast tumor metastasis: analysis via proteomic profiling.

作者信息

Goodison Steve, Urquidi Virginia

机构信息

Department of Surgery, University of Florida, 653 West 8th Street, Jacksonville, FL 32209, USA.

出版信息

Expert Rev Proteomics. 2008 Jun;5(3):457-67. doi: 10.1586/14789450.5.3.457.

Abstract

The ability to predict the metastatic behavior of a patient's cancer, as well as to detect and eradicate such recurrences, remain major clinical challenges in oncology. While many potential molecular biomarkers have been identified and tested previously, none have greatly improved the accuracy of specimen evaluation over routine histopathological criteria and, to date, they predict individual outcomes poorly. The ongoing development of high-throughput proteomic profiling technologies is opening new avenues for the investigation of cancer and, through application in tissue-based studies and animal models, will facilitate the identification of molecular signatures that are associated with breast tumor cell phenotype. The appropriate use of these approaches has the potential to provide efficient biomarkers, and to improve our knowledge of tumor biology. This, in turn, will enable the development of targeted therapeutics aimed at ameliorating the lethal dissemination of breast cancer. In this review, we focus on the accumulating proteomic signatures of breast tumor progression, particularly those that correlate with the occurrence of distant metastases, and discuss some of the expected future developments in the field.

摘要

预测患者癌症转移行为以及检测和根除此类复发的能力,仍然是肿瘤学领域的主要临床挑战。虽然此前已经鉴定和测试了许多潜在的分子生物标志物,但没有一种能比常规组织病理学标准大大提高标本评估的准确性,而且迄今为止,它们对个体预后的预测效果很差。高通量蛋白质组分析技术的不断发展为癌症研究开辟了新途径,通过应用于基于组织的研究和动物模型,将有助于识别与乳腺肿瘤细胞表型相关的分子特征。合理使用这些方法有可能提供有效的生物标志物,并增进我们对肿瘤生物学的了解。这反过来将推动旨在改善乳腺癌致命性扩散的靶向治疗的发展。在这篇综述中,我们重点关注乳腺肿瘤进展过程中不断积累的蛋白质组特征,特别是那些与远处转移发生相关的特征,并讨论该领域一些预期的未来发展。

相似文献

1
Breast tumor metastasis: analysis via proteomic profiling.
Expert Rev Proteomics. 2008 Jun;5(3):457-67. doi: 10.1586/14789450.5.3.457.
2
Genomic signatures of breast cancer metastasis.
Cytogenet Genome Res. 2007;118(2-4):116-29. doi: 10.1159/000108292.
3
Urinary proteomic profiling for diagnostic bladder cancer biomarkers.
Expert Rev Proteomics. 2009 Oct;6(5):507-14. doi: 10.1586/epr.09.70.
4
Breast cancer biomarkers: proteomic discovery and translation to clinically relevant assays.
Expert Rev Proteomics. 2012 Dec;9(6):599-614. doi: 10.1586/epr.12.62.
5
Differential proteomic analysis of a highly metastatic variant of human breast cancer cells using two-dimensional differential gel electrophoresis.
J Cancer Res Clin Oncol. 2010 Oct;136(10):1545-56. doi: 10.1007/s00432-010-0812-0. Epub 2010 Feb 14.
7
High-throughput proteomics of breast carcinoma cells: a focus on FTICR-MS.
Expert Rev Proteomics. 2008 Jun;5(3):445-55. doi: 10.1586/14789450.5.3.445.

引用本文的文献

1
Signaling pathways in breast cancer metastasis - novel insights from functional genomics.
Breast Cancer Res. 2011 Mar 14;13(2):206. doi: 10.1186/bcr2831.
2
Metastasis-related plasma membrane proteins of human breast cancer cells identified by comparative quantitative mass spectrometry.
Mol Cell Proteomics. 2009 Jun;8(6):1436-49. doi: 10.1074/mcp.M800061-MCP200. Epub 2009 Mar 24.

本文引用的文献

1
Combining laser capture microdissection and proteomics techniques.
Methods Mol Biol. 2008;428:159-78. doi: 10.1007/978-1-59745-117-8_9.
2
Integrated approaches to uncovering transcription regulatory networks in mammalian cells.
Genomics. 2008 Mar;91(3):219-31. doi: 10.1016/j.ygeno.2007.11.005. Epub 2008 Jan 8.
6
Bladder cancer associated glycoprotein signatures revealed by urinary proteomic profiling.
J Proteome Res. 2007 Jul;6(7):2631-9. doi: 10.1021/pr0700807. Epub 2007 May 23.
8
Systems biology approach to integrative comparative genomics.
Expert Rev Proteomics. 2007 Feb;4(1):107-19. doi: 10.1586/14789450.4.1.107.
9
Down-regulation of PHLDA1 gene expression is associated with breast cancer progression.
Breast Cancer Res Treat. 2007 Nov;106(1):49-56. doi: 10.1007/s10549-006-9475-6. Epub 2007 Jan 9.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验