Suppr超能文献

使用膜分离算法和阳性对照的定量分析对成像组织学切片中的人表皮生长因子受体2免疫组织化学检测进行计算机辅助评估。

Computer-assisted assessment of the human epidermal growth factor receptor 2 immunohistochemical assay in imaged histologic sections using a membrane isolation algorithm and quantitative analysis of positive controls.

作者信息

Hall Bonnie H, Ianosi-Irimie Monica, Javidian Parisa, Chen Wenjin, Ganesan Shridar, Foran David J

机构信息

Graduate School for the Biomedical Sciences, UMDNJ, 675 Hoes Lane, Piscataway, New Jersey, USA.

出版信息

BMC Med Imaging. 2008 Jun 5;8:11. doi: 10.1186/1471-2342-8-11.

Abstract

BACKGROUND

Breast cancers that overexpress the human epidermal growth factor receptor 2 (HER2) are eligible for effective biologically targeted therapies, such as trastuzumab. However, accurately determining HER2 overexpression, especially in immunohistochemically equivocal cases, remains a challenge. Manual analysis of HER2 expression is dependent on the assessment of membrane staining as well as comparisons with positive controls. In spite of the strides that have been made to standardize the assessment process, intra- and inter-observer discrepancies in scoring is not uncommon. In this manuscript we describe a pathologist assisted, computer-based continuous scoring approach for increasing the precision and reproducibility of assessing imaged breast tissue specimens.

METHODS

Computer-assisted analysis on HER2 IHC is compared with manual scoring and fluorescence in situ hybridization results on a test set of 99 digitally imaged breast cancer cases enriched with equivocally scored (2+) cases. Image features are generated based on the staining profile of the positive control tissue and pixels delineated by a newly developed Membrane Isolation Algorithm. Evaluation of results was performed using Receiver Operator Characteristic (ROC) analysis.

RESULTS

A computer-aided diagnostic approach has been developed using a membrane isolation algorithm and quantitative use of positive immunostaining controls. By incorporating internal positive controls into feature analysis a greater Area Under the Curve (AUC) in ROC analysis was achieved than feature analysis without positive controls. Evaluation of HER2 immunostaining that utilized membrane pixels, controls, and percent area stained showed significantly greater AUC than manual scoring, and significantly less false positive rate when used to evaluate immunohistochemically equivocal cases.

CONCLUSION

It has been shown that by incorporating both a membrane isolation algorithm and analysis of known positive controls a computer-assisted diagnostic algorithm was developed that can reproducibly score HER2 status in IHC stained clinical breast cancer specimens. For equivocal scoring cases, this approach performed better than standard manual evaluation as assessed by ROC analysis in our test samples. Finally, there exists potential for utilizing image-analysis techniques for improving HER2 scoring at the immunohistochemically equivocal range.

摘要

背景

过表达人表皮生长因子受体2(HER2)的乳腺癌适合接受有效的生物靶向治疗,如曲妥珠单抗。然而,准确判定HER2过表达,尤其是在免疫组化结果不明确的病例中,仍然是一项挑战。HER2表达的手动分析依赖于对膜染色的评估以及与阳性对照的比较。尽管在标准化评估过程方面已取得了进展,但观察者内部和观察者之间在评分上的差异并不罕见。在本论文中,我们描述了一种由病理学家辅助的基于计算机的连续评分方法,以提高评估乳腺组织成像标本的准确性和可重复性。

方法

在一组99例富含评分不明确(2+)病例的数字化成像乳腺癌病例测试集中,将HER2免疫组化的计算机辅助分析与手动评分及荧光原位杂交结果进行比较。基于阳性对照组织的染色特征和由新开发的膜分离算法描绘的像素生成图像特征。使用受试者操作特征(ROC)分析进行结果评估。

结果

已开发出一种计算机辅助诊断方法,该方法使用膜分离算法并定量使用阳性免疫染色对照。通过将内部阳性对照纳入特征分析,与无阳性对照的特征分析相比,在ROC分析中获得了更大的曲线下面积(AUC)。利用膜像素、对照和染色面积百分比对HER2免疫染色进行评估,其AUC显著高于手动评分,并且在用于评估免疫组化结果不明确的病例时,假阳性率显著更低。

结论

已表明通过结合膜分离算法和对已知阳性对照的分析,开发出了一种计算机辅助诊断算法,该算法可在免疫组化染色的临床乳腺癌标本中可重复地对HER2状态进行评分。对于评分不明确的病例,在我们的测试样本中,通过ROC分析评估,该方法比标准手动评估表现更好。最后,利用图像分析技术在免疫组化结果不明确范围内改善HER2评分存在潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67e1/2447833/b933edc26e92/1471-2342-8-11-1.jpg

相似文献

5
Automated quantitative assessment of HER-2/neu immunohistochemical expression in breast cancer.
IEEE Trans Med Imaging. 2009 Jun;28(6):916-25. doi: 10.1109/TMI.2009.2012901. Epub 2009 Jan 19.
6
Image Analysis of HER2 Immunohistochemical Staining of Surgical Breast Cancer Specimens.
Yonsei Med J. 2019 Feb;60(2):158-162. doi: 10.3349/ymj.2019.60.2.158.
7
Comparison between digital image analysis and visual assessment of immunohistochemical HER2 expression in breast cancer.
Pathol Res Pract. 2018 Dec;214(12):2087-2092. doi: 10.1016/j.prp.2018.10.015. Epub 2018 Oct 23.
8
Free digital image analysis software helps to resolve equivocal scores in HER2 immunohistochemistry.
Virchows Arch. 2016 Feb;468(2):191-8. doi: 10.1007/s00428-015-1868-7. Epub 2015 Oct 22.

引用本文的文献

1
High contrast breast cancer biomarker semi-quantification and immunohistochemistry imaging using upconverting nanoparticles.
Biomed Opt Express. 2024 Jan 19;15(2):900-909. doi: 10.1364/BOE.504939. eCollection 2024 Feb 1.
2
Deep Learning-Based H-Score Quantification of Immunohistochemistry-Stained Images.
Mod Pathol. 2024 Feb;37(2):100398. doi: 10.1016/j.modpat.2023.100398. Epub 2023 Dec 1.
3
Artificial intelligence applied to breast pathology.
Virchows Arch. 2022 Jan;480(1):191-209. doi: 10.1007/s00428-021-03213-3. Epub 2021 Nov 18.
4
Histo-ELISA technique for quantification and localization of tissue components.
Sci Rep. 2020 Nov 16;10(1):19849. doi: 10.1038/s41598-020-76950-1.
5
AI in Medical Imaging Informatics: Current Challenges and Future Directions.
IEEE J Biomed Health Inform. 2020 Jul;24(7):1837-1857. doi: 10.1109/JBHI.2020.2991043.
6
Multifractal-based nuclei segmentation in fish images.
Biomed Microdevices. 2017 Sep;19(3):67. doi: 10.1007/s10544-017-0208-x.
8
Free digital image analysis software helps to resolve equivocal scores in HER2 immunohistochemistry.
Virchows Arch. 2016 Feb;468(2):191-8. doi: 10.1007/s00428-015-1868-7. Epub 2015 Oct 22.
9
Observer performance in the use of digital and optical microscopy for the interpretation of tissue-based biomarkers.
Anal Cell Pathol (Amst). 2014;2014:157308. doi: 10.1155/2014/157308. Epub 2014 Nov 11.

本文引用的文献

1
Note on the sampling error of the difference between correlated proportions or percentages.
Psychometrika. 1947 Jun;12(2):153-7. doi: 10.1007/BF02295996.
6
Controversies in the assessment of HER-2: more questions than answers.
Adv Anat Pathol. 2006 Sep;13(5):263-9. doi: 10.1097/01.pap.0000213043.16200.92.
9
A prototype for unsupervised analysis of tissue microarrays for cancer research and diagnostics.
IEEE Trans Inf Technol Biomed. 2004 Jun;8(2):89-96. doi: 10.1109/titb.2004.828891.
10
Quantitation in immunohistology: fact or fiction? A discussion of variables that influence results.
Appl Immunohistochem Mol Morphol. 2004 Mar;12(1):1-7. doi: 10.1097/00129039-200403000-00001.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验