Suppr超能文献

人工智能在医学影像信息学中的应用:当前的挑战与未来方向。

AI in Medical Imaging Informatics: Current Challenges and Future Directions.

出版信息

IEEE J Biomed Health Inform. 2020 Jul;24(7):1837-1857. doi: 10.1109/JBHI.2020.2991043.

Abstract

This paper reviews state-of-the-art research solutions across the spectrum of medical imaging informatics, discusses clinical translation, and provides future directions for advancing clinical practice. More specifically, it summarizes advances in medical imaging acquisition technologies for different modalities, highlighting the necessity for efficient medical data management strategies in the context of AI in big healthcare data analytics. It then provides a synopsis of contemporary and emerging algorithmic methods for disease classification and organ/ tissue segmentation, focusing on AI and deep learning architectures that have already become the de facto approach. The clinical benefits of in-silico modelling advances linked with evolving 3D reconstruction and visualization applications are further documented. Concluding, integrative analytics approaches driven by associate research branches highlighted in this study promise to revolutionize imaging informatics as known today across the healthcare continuum for both radiology and digital pathology applications. The latter, is projected to enable informed, more accurate diagnosis, timely prognosis, and effective treatment planning, underpinning precision medicine.

摘要

本文综述了医学影像学信息学领域的最新研究解决方案,讨论了临床转化,并为推进临床实践提供了未来方向。更具体地说,它总结了不同模式的医学成像采集技术的进展,强调了在大数据分析中的人工智能背景下,高效的医疗数据管理策略的必要性。然后,它概述了用于疾病分类和器官/组织分割的当代和新兴算法方法,重点介绍了已经成为事实上的方法的人工智能和深度学习架构。与不断发展的 3D 重建和可视化应用相关的计算机建模进展的临床益处也进一步记录在案。最后,受本研究中强调的相关研究分支驱动的综合分析方法有望彻底改变当今整个医疗保健领域的影像学信息学,包括放射学和数字病理学应用。后者预计将能够为精准医学提供信息支持、更准确的诊断、及时的预后和有效的治疗计划。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50d7/8580417/e7402cbdf7e7/nihms-1742605-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验